Description Usage Arguments Details Value Author(s) References Examples
This function performs functional mediation regression under the historical influence model. Tuning parameter is chosen based on cross-validation.
| 1 2 3 4 | 
| Z |  a data matrix.  | 
| M |  a data matrix.  | 
| Y |  a data matrix.  | 
| delta.grid1 | a number indicates the width of treatment-mediator time interval in the mediator model. | 
| delta.grid2 | a number indicates the width of treatment-outcome time interval in the outcome model. | 
| delta.grid3 | a number indicates the width of mediator-outcome time interval in the outcome model. | 
| intercept |  a logic variable. Default is  | 
| basis1 |  a data matrix. Basis function on the s domain used in the functional data analysis. The number of columns is the number of basis function considered. If  | 
| Ld2.basis1 |  a data matrix. The second derivative of the basis function on the s domain. The number of columns is the number of basis function considered. If  | 
| basis2 |  a data matrix. Basis function on the t domain used in the functional data analysis. The number of columns is the number of basis function considered. If  | 
| Ld2.basis2 |  a data matrix. The second derivative of the basis function on the t domain. The number of columns is the number of basis function considered. If  | 
| basis.type |  a character of basis function type. Default is Fourier basis ( | 
| nbasis1 |  an integer, the number of basis function on the s domain included. If  | 
| nbasis2 |  an integer, the number of basis function on the t domain included. If  | 
| timeinv | a numeric vector of length two, the time interval considered in the analysis. Default is (0,1). | 
| timegrids |  a numeric vector of time grids of measurement. If  | 
| lambda1 | a numeric vector of tuning parameter values on the s domain. | 
| lambda2 | a numeric vector of tuning parameter values on the t domain. | 
| nfolds | a number gives the number of folds in cross-validation. | 
The historical influence mediation model is
M(t)=\int_{Ω_{t}^{1}}Z(s)α(s,t)ds+ε_{1}(t),
Y(t)=\int_{Ω_{t}^{2}}Z(s)γ(s,t)ds+\int_{Ω_{t}^{3}}M(s)β(s,t)ds+ε_{2}(t),
where α(s,t), β(s,t), γ(s,t) are coefficient curves; Ω_{t}^{j}=[(t-δ_{j})\vee 0,t] for j=1,2,3. The model coefficient curves are estimated by minimizing the penalized L_{2}-loss. Tuning parameter λ controls the smoothness of the estimated curves, and is chosen by cross-validation.
| basis1 | the basis functions on the s domain used in the analysis. | 
| basis2 | the basis functions on the t domain used in the analysis. | 
| M | a list of output for the mediator model 
 
 
 
 
 | 
| Y | a list of output for the outcome model 
 
 
 
 
 | 
| IE | a list of output for the indirect effect comparing Z_{1}(t)=1 versus Z_{0}(t)=0 
 | 
| DE | a list of output for the direct effect comparing Z_{1}(t)=1 versus Z_{0}(t)=0 
 | 
Yi Zhao, Johns Hopkins University, zhaoyi1026@gmail.com;
Xi Luo, Brown University xi.rossi.luo@gmail.com;
Martin Lindquist, Johns Hopkins University, mal2053@gmail.com;
Brian Caffo, Johns Hopkins University, bcaffo@gmail.com
Zhao et al. (2017). Functional Mediation Analysis with an Application to Functional Magnetic Resonance Imaging Data. arXiv preprint arXiv:1805.06923.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 | ##################################################
# Historical influence functional mediation model
data(env.historical)
Z<-get("Z",env.historical)
M<-get("M",env.historical)
Y<-get("Y",env.historical)
# consider Fourier basis
fit<-FMA.historical.CV(Z,M,Y,delta.grid1=3,delta.grid2=3,delta.grid3=3,
    intercept=FALSE,timeinv=c(0,300))
##################################################
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.