Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
dpi = 300,
fig.width = 5, fig.height = 3
)
## ----message = FALSE, warning=FALSE, eval = TRUE------------------------------
# load {cfr} and data packages
library(cfr)
# packages to wrangle and plot data
library(dplyr)
library(tidyr)
library(purrr)
library(scales)
library(forcats)
library(ggplot2)
## -----------------------------------------------------------------------------
# get Covid data provided with the package
data("covid_data")
# filter for the U.K
df_covid_uk <- filter(
covid_data,
country == "United Kingdom", date <= "2020-06-30"
)
# view the data format
tail(df_covid_uk)
## -----------------------------------------------------------------------------
# static ascertainment on data
estimate_ascertainment(
data = df_covid_uk,
delay_density = function(x) dlnorm(x, meanlog = 2.577, sdlog = 0.440),
severity_baseline = 0.014
)
## ----warning=FALSE------------------------------------------------------------
# countries with weekly reporting
weekly_reporting <- c("France", "Germany", "Spain", "Ukraine")
# subset for early covid outbreaks
covid_data_early <- filter(
covid_data, date < "2020-06-01",
!country %in% weekly_reporting
)
# nest the data
df_reporting <- nest(covid_data_early, .by = country)
# define density function
delay_density <- function(x) dlnorm(x, meanlog = 2.577, sdlog = 0.440)
# calculate the reporting rate in each country using
# map on nested dataframes
df_reporting <- mutate(
df_reporting,
reporting = map(
.x = data, .f = estimate_ascertainment,
# arguments to function
severity_baseline = 0.014,
delay_density = delay_density
)
)
# unnest the data
df_reporting <- unnest(df_reporting, cols = "reporting")
# visualise the data
head(df_reporting)
## ----fig.cap = "Example plot of the ascertainment ratio by country during the early stages of the Covid-19 pandemic.", class.source = 'fold-hide'----
df_reporting %>%
ggplot() +
geom_pointrange(
aes(
x = fct_reorder(country, ascertainment_estimate),
y = ascertainment_estimate,
ymin = ascertainment_low,
ymax = ascertainment_high
)
) +
coord_flip() +
labs(x = NULL, y = "Ascertainment ratio") +
theme(legend.position = "none") +
scale_y_continuous(
labels = percent, limits = c(0, 1)
) +
theme_classic() +
theme(legend.position = "top")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.