A constrained generalized additive model is fitted by the cgam routine. Given a set of predictors, each of which may have a shape or order restrictions, the maximum likelihood estimator for the constrained generalized additive model is found using an iteratively reweighted cone projection algorithm. The ShapeSelect routine chooses a subset of predictor variables and describes the component relationships with the response. For each predictor, the user needs only specify a set of possible shape or order restrictions. A model selection method chooses the shapes and orderings of the relationships as well as the variables. The cone information criterion (CIC) is used to select the best combination of variables and shapes. A genetic algorithm may be used when the set of possible models is large. In addition, the cgam routine implements a twodimensional isotonic regression using warpedplane splines without additivity assumptions. It can also fit a convex or concave regression surface with triangle splines without additivity assumptions. See Mary C. Meyer (2013)
Package details 


Author  Mary C. Meyer and Xiyue Liao 
Date of publication  20180411 17:42:21 UTC 
Maintainer  Xiyue Liao <[email protected]> 
License  GPL (>= 2) 
Version  1.10 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.