gen_rel_change_scenario: Generates relative climate change scenarios based on...

View source: R/gen_rel_change_scenario.R

gen_rel_change_scenarioR Documentation

Generates relative climate change scenarios based on extracted CMIP6 data

Description

Takes the extracted CMIP6 data and returns climate change scenarios, which can then be used to generate weather data.

Usage

gen_rel_change_scenario(
  downloaded_list,
  scenarios = c(2050, 2085),
  reference_period = c(1986:2014),
  future_window_width = 30
)

Arguments

downloaded_list

list of data.frames, generated using the extract_cmip6_data function. Elements are named after the shared socioeconomic pathway ('SSP') and global climate model ('GCM')

scenarios

numeric vector, states the future years, for which the climate change scenarios should be generated. By default set to c(2050, 2085).

reference_period

numeric vector specifying the years to be used as the reference period. Defaults to c(1986:2014).

future_window_width

numeric, sets the window width of the running mean calculation for the mean temperatures of the years indicated by scenarios

Value

data.frame for the calculated relative change scenarios, all locations, SSPs, timepoints, GCMs combined

Author(s)

Lars Caspersen

Examples

## Not run: 
download_cmip6_ecmwfr(scenario = 'ssp1_2_6', 
                      area = c(55, 5.5, 47, 15.1),
                      user = 'write user id here',
                      key = 'write key here',
                      model = 'AWI-CM-1-1-MR',
                      frequency = 'monthly', 
                      variable = c('Tmin', 'Tmax'),
                      year_start = 2015, 
                      year_end = 2100)
                      
download_baseline_cmip6_ecmwfr(
    area = c(55, 5.5, 47, 15.1),
    user = 'write user id here',
    key = 'write key here',
    model = 'AWI-CM-1-1-MR',
    frequency = 'monthly', 
   
station <- data.frame(
      station_name = c('Zaragoza', 'Klein-Altendorf', 'Sfax',
      'Cieza', 'Meknes', 'Santomera'),
      longitude = c(-0.88,  6.99, 10.75, -1.41, -5.54, -1.05),
      latitude = c(41.65, 50.61, 34.75, 38.24, 33.88, 38.06))
      
extracted <- extract_cmip6_data(stations = station)

gen_rel_change_scenario(extracted)


## End(Not run)


chillR documentation built on Nov. 28, 2023, 1:09 a.m.