View source: R/gen_rel_change_scenario.R
gen_rel_change_scenario | R Documentation |
Takes the extracted CMIP6 data and returns climate change scenarios, which can then be used to generate weather data.
gen_rel_change_scenario(
downloaded_list,
scenarios = c(2050, 2085),
reference_period = c(1986:2014),
future_window_width = 30
)
downloaded_list |
list of data.frames, generated using the extract_cmip6_data function. Elements are named after the shared socioeconomic pathway ('SSP') and global climate model ('GCM') |
scenarios |
numeric vector, states the future years, for which the climate change scenarios should be generated. By default set to c(2050, 2085). |
reference_period |
numeric vector specifying the years to be used as the reference period. Defaults to c(1986:2014). |
future_window_width |
numeric, sets the window width of the running mean calculation for the mean temperatures of the years indicated by scenarios |
data.frame for the calculated relative change scenarios, all locations, SSPs, timepoints, GCMs combined
Lars Caspersen
## Not run:
download_cmip6_ecmwfr(scenario = 'ssp1_2_6',
area = c(55, 5.5, 47, 15.1),
user = 'write user id here',
key = 'write key here',
model = 'AWI-CM-1-1-MR',
frequency = 'monthly',
variable = c('Tmin', 'Tmax'),
year_start = 2015,
year_end = 2100)
download_baseline_cmip6_ecmwfr(
area = c(55, 5.5, 47, 15.1),
user = 'write user id here',
key = 'write key here',
model = 'AWI-CM-1-1-MR',
frequency = 'monthly',
station <- data.frame(
station_name = c('Zaragoza', 'Klein-Altendorf', 'Sfax',
'Cieza', 'Meknes', 'Santomera'),
longitude = c(-0.88, 6.99, 10.75, -1.41, -5.54, -1.05),
latitude = c(41.65, 50.61, 34.75, 38.24, 33.88, 38.06))
extracted <- extract_cmip6_data(stations = station)
gen_rel_change_scenario(extracted)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.