Nothing
#' Wald test for Multivariate Least-Squares regression
#'
#' @param mlsresults output of mls, mlsresults<-mls(y, x, df_flag)
#' @author P. Paruolo
#' @description Wald test for multivariate Least-Squares regression
#' @importFrom stats pchisq
# @usage wald<-Wald.mls(mlsresults)
#' @references Berta et al. 2020
#' @return wald table of Wald tests on significance of single regressors and pvalues based on chi square distribution
#' @export
Wald.mls <- function(mlsresults)
{ # Wald test on significance of single x variables in
# y = x \beta + u
# (n x g) (n x k) (k x g) (n x g)
# returns wald = trace(c'(x'x)^{-1}c)^{-1}c'\beta\Omega{-1}\beta'c) and pval
# where c selects each x, one at the time.
mB<-t(mlsresults$coeffs); XXinv<-mlsresults$XXinv; # mB =t (\beta), x'x^{-1}
Oinv<-solve(mlsresults$Omega); # Inv Omega
ny<-nrow(Oinv); nx<-nrow(XXinv); # ny nx
Waldtable<-matrix(nrow=2,ncol=nx); # Table of results. 1st row: Wald stat, 2nd row: pval
colnames(Waldtable)<-colnames(mB); # x var names
rownames(Waldtable)<-c("Wald stat", "p value") # row names
for(j in (1:nx)){
b<-as.matrix(mB[,j])
Wj<-t(b)%*%Oinv%*%b/XXinv[j,j]
pvj<-pchisq(Wj,ny,lower.tail = FALSE)
Waldtable[1,j]<-Wj; Waldtable[2,j]<-pvj}
# write output
out <- Waldtable
# result:
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.