Nothing
# Prepare correct data transformation
correct_data_claus <- claus_2020 |>
dplyr::select(id, time, bdi) |>
dplyr::filter(time %in% c(1, 4)) |>
tidyr::pivot_wider(
names_from = time,
values_from = bdi,
names_prefix = "t_"
) |>
dplyr::rename(pre = t_1, post = t_4) |>
dplyr::mutate(change = post - pre) |>
stats::na.omit()
correct_data_jacobson <- jacobson_1989 |>
dplyr::select(id = subject, time, gds) |>
tidyr::pivot_wider(
names_from = time,
values_from = gds
) |>
dplyr::mutate(change = post - pre) |>
stats::na.omit()
# Factor sorting test
factor_wide_data <- jacobson_1989 |>
dplyr::mutate(
time = factor(time, levels = c("pre", "post"))
) |>
.prep_data(subject, time, gds, pre = "pre", method = "JT") |>
purrr::pluck("wide")
# HLM Data
imported_data <- anxiety |>
dplyr::select(id = subject, group = treatment, time = measurement, outcome = anxiety) |>
dplyr::mutate(id = as.character(id))
manual_groups <- imported_data |>
dplyr::select(id, group) |>
dplyr::distinct(id, group)
# Get n of measurements and first (pre) and last (post) measurement
wide_data <- imported_data |>
stats::na.omit() |>
dplyr::summarise(
n = dplyr::n(),
pre = dplyr::first(outcome),
post = dplyr::last(outcome),
.by = id
)
cutoff_data <- wide_data |>
dplyr::left_join(manual_groups, dplyr::join_by("id")) |>
dplyr::filter(n >= 3) |>
dplyr::relocate(group, .after = id)
# Only use those participants with more than one measurement
prepped_data <- imported_data |>
dplyr::filter(id %in% cutoff_data[["id"]])
# Determine min and max of measurements (needed for plotting)
min_measurement <- min(prepped_data[["time"]])
max_measurement <- max(prepped_data[["time"]])
# Tests
test_that("data is prepared correctly", {
prepped_list_claus <- .prep_data(claus_2020, id, time, bdi, pre = 1, post = 4, method = "JT")
prepped_list_jacobson <- .prep_data(jacobson_1989, subject, time, gds, pre = "pre", method = "JT")
jacobson_factor <- jacobson_1989 |>
dplyr::mutate(
time = factor(time, levels = c("pre", "post"))
)
prepped_factor_data_list <- .prep_data(jacobson_factor, subject, time, pre = "pre", gds, method = "JT")
# Claus data
expect_equal(prepped_list_claus[["data"]], correct_data_claus)
# Jacobson data
expect_equal(prepped_list_jacobson[["data"]], correct_data_jacobson)
# Factor data
expect_snapshot(.prep_data(jacobson_factor, subject, time, pre = "pre", gds, method = "JT"))
expect_equal(prepped_factor_data_list[["wide"]], factor_wide_data)
})
test_that("data is prepared correctly for HLM method", {
prepped_list <- .prep_data(anxiety, subject, measurement, anxiety, group = treatment, method = "HLM")
expect_equal(prepped_list[["wide"]], wide_data)
expect_equal(prepped_list[["groups"]], manual_groups)
expect_equal(prepped_list[["data"]], cutoff_data)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.