zoned-parsing | R Documentation |
There are two parsers into a zoned-time, zoned_time_parse_complete()
and
zoned_time_parse_abbrev()
.
zoned_time_parse_complete()
is a parser for complete date-time strings,
like "2019-01-01T00:00:00-05:00[America/New_York]"
. A complete date-time
string has both the time zone offset and full time zone name in the string,
which is the only way for the string itself to contain all of the information
required to construct a zoned-time. Because of this,
zoned_time_parse_complete()
requires both the %z
and %Z
commands to be
supplied in the format
string.
The default options assume that x
should be parsed at second precision,
using a format
string of "%Y-%m-%dT%H:%M:%S%Ez[%Z]"
. This matches the
default result from calling format()
on a zoned-time. Additionally, this
format matches the de-facto standard extension to RFC 3339 for creating
completely unambiguous date-times.
zoned_time_parse_abbrev()
is a parser for date-time strings containing only
a time zone abbreviation, like "2019-01-01 00:00:00 EST"
. The time zone
abbreviation is not enough to identify the full time zone name that the
date-time belongs to, so the full time zone name must be supplied as the
zone
argument. However, the time zone abbreviation can help with resolving
ambiguity around daylight saving time fallbacks.
For zoned_time_parse_abbrev()
, %Z
must be supplied and is interpreted as
the time zone abbreviation rather than the full time zone name.
If used, the %z
command must parse correctly, but its value will be
completely ignored.
The default options assume that x
should be parsed at second precision,
using a format
string of "%Y-%m-%d %H:%M:%S %Z"
. This matches the default
result from calling print()
or format(usetz = TRUE)
on a POSIXct
date-time.
zoned_time_parse_complete(
x,
...,
format = NULL,
precision = "second",
locale = clock_locale()
)
zoned_time_parse_abbrev(
x,
zone,
...,
format = NULL,
precision = "second",
locale = clock_locale()
)
x |
A character vector to parse. |
... |
These dots are for future extensions and must be empty. |
format |
A format string. A combination of the following commands, or A vector of multiple format strings can be supplied. They will be tried in the order they are provided. Year
Month
Day
Day of the week
ISO 8601 week-based year
Week of the year
Day of the year
Date
Time of day
Time zone
Miscellaneous
|
precision |
A precision for the resulting zoned-time. One of:
Setting the |
locale |
A locale object created from |
zone |
A full time zone name. |
If zoned_time_parse_complete()
is given input that is length zero, all
NA
s, or completely fails to parse, then no time zone will be able to be
determined. In that case, the result will use "UTC"
.
If your date-time strings contain time zone offsets (like -04:00
), but
not the full time zone name, you might need sys_time_parse()
.
If your date-time strings don't contain time zone offsets or the full time
zone name, you might need to use naive_time_parse()
. From there, if you
know the time zone that the date-times are supposed to be in, you can convert
to a zoned-time with as_zoned_time()
.
A zoned-time.
It is highly recommended to parse all of the information in the date-time
string into a type at least as precise as the string. For example, if your
string has fractional seconds, but you only require seconds, specify a
sub-second precision
, then round to seconds manually using whatever
convention is appropriate for your use case. Parsing such a string directly
into a second precision result is ambiguous and undefined, and is unlikely to
work as you might expect.
library(magrittr)
zoned_time_parse_complete("2019-01-01T01:02:03-05:00[America/New_York]")
zoned_time_parse_complete(
"January 21, 2019 -0500 America/New_York",
format = "%B %d, %Y %z %Z"
)
# Nanosecond precision
x <- "2019/12/31 01:05:05.123456700-05:00[America/New_York]"
zoned_time_parse_complete(
x,
format = "%Y/%m/%d %H:%M:%S%Ez[%Z]",
precision = "nanosecond"
)
# The `%z` offset must correspond to the true offset that would be used
# if the input was parsed as a naive-time and then converted to a zoned-time
# with `as_zoned_time()`. For example, the time that was parsed above used an
# offset of `-05:00`. We can confirm that this is correct with:
year_month_day(2019, 1, 1, 1, 2, 3) %>%
as_naive_time() %>%
as_zoned_time("America/New_York")
# So the following would not parse correctly
zoned_time_parse_complete("2019-01-01T01:02:03-04:00[America/New_York]")
# `%z` is useful for breaking ties in otherwise ambiguous times. For example,
# these two times are on either side of a daylight saving time fallback.
# Without the `%z` offset, you wouldn't be able to tell them apart!
x <- c(
"1970-10-25T01:30:00-04:00[America/New_York]",
"1970-10-25T01:30:00-05:00[America/New_York]"
)
zoned_time_parse_complete(x)
# If you have date-time strings with time zone abbreviations,
# `zoned_time_parse_abbrev()` should be able to help. The `zone` must be
# provided, because multiple countries may use the same time zone
# abbreviation. For example:
x <- "1970-01-01 02:30:30 IST"
# IST = India Standard Time
zoned_time_parse_abbrev(x, "Asia/Kolkata")
# IST = Israel Standard Time
zoned_time_parse_abbrev(x, "Asia/Jerusalem")
# The time zone abbreviation is mainly useful for resolving ambiguity
# around daylight saving time fallbacks. Without the abbreviation, these
# date-times would be ambiguous.
x <- c(
"1970-10-25 01:30:00 EDT",
"1970-10-25 01:30:00 EST"
)
zoned_time_parse_abbrev(x, "America/New_York")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.