Nothing
## ----setup, include=FALSE------------------------------------------------
knitr::opts_chunk$set(echo = TRUE, eval = FALSE)
## ----eval=FALSE----------------------------------------------------------
# library(keras)
#
# FLAGS <- flags(
# flag_numeric("dropout_rate", 0.4)
# )
#
# mnist <- dataset_mnist()
# x_train <- mnist$train$x
# y_train <- mnist$train$y
# x_test <- mnist$test$x
# y_test <- mnist$test$y
#
# x_train <- array_reshape(x_train, c(nrow(x_train), 784))
# x_test <- array_reshape(x_test, c(nrow(x_test), 784))
# x_train <- x_train / 255
# x_test <- x_test / 255
#
# y_train <- to_categorical(y_train, 10)
# y_test <- to_categorical(y_test, 10)
#
# model <- keras_model_sequential()
#
# model %>%
# layer_dense(units = 256, activation = 'relu', input_shape = c(784)) %>%
# layer_dropout(rate = FLAGS$dropout_rate) %>%
# layer_dense(units = 128, activation = 'relu') %>%
# layer_dropout(rate = 0.3) %>%
# layer_dense(units = 10, activation = 'softmax')
#
# model %>% compile(
# loss = 'categorical_crossentropy',
# optimizer = optimizer_rmsprop(),
# metrics = c('accuracy')
# )
#
# model %>% fit(
# x_train, y_train,
# epochs = 20, batch_size = 128,
# validation_split = 0.2
# )
#
# export_savedmodel(model, "savedmodel")
## ----eval=FALSE----------------------------------------------------------
# cloudml_deploy("savedmodel", name = "keras_mnist")
## ----eval=FALSE----------------------------------------------------------
# mnist_image <- keras::dataset_mnist()$train$x[1,,]
# grid::grid.raster(mnist_image / 255)
## ----eval=FALSE----------------------------------------------------------
# cloudml_predict(
# list(
# as.vector(t(mnist_image))
# ),
# name = "keras_mnist",
# )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.