deltak | R Documentation |
This function takes an "auc"
class object and calculates the difference in AUC value by cluster number (called delta-K). Peaks in delta-K
coincide with the cluster numbers that are most robust and provide estimates for the optimal cluster number.
deltak(x)
x |
a valid |
deltak(x)
returns a data.frame with the following variables.
k |
cluster number as a factor |
a |
algorithm identifier as a factor |
dk |
the delta-K value |
Dr. T. Ian Simpson ian.simpson@ed.ac.uk
Merged consensus clustering to assess and improve class discovery with microarray data. Simpson TI, Armstrong JD and Jarman AP. BMC Bioinformatics 2010, 11:590.
Also see the aucs
function.
#load a test cluscomp result set data(testcmr) #calculate all of the AUC values from the \code{cluscomp} result for algorithm 'kmeans' kmeanscmr <- testcmr[grep('kmeans',names(testcmr))]; acs <- aucs(kmeanscmr); #calculate the delta-K values dks <- deltak(acs);
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.