Skmeans: Perform spherical k-means clustering on a data matrix....

Description Usage Arguments Value Author(s) Examples

View source: R/clusternor.R

Description

Perform spherical k-means clustering on a data matrix. Similar to the k-means algorithm differing only in that data features are min-max normalized the dissimilarity metric is Cosine distance.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
Skmeans(
  data,
  centers,
  nrow = -1,
  ncol = -1,
  iter.max = .Machine$integer.max,
  nthread = -1,
  init = c("kmeanspp", "random", "forgy", "none"),
  tolerance = 1e-06
)

Arguments

data

Data file name on disk (NUMA optmized) or In-memory data matrix

centers

Either (i) The number of centers (i.e., k), or (ii) an In-memory data matrix

nrow

The number of samples in the dataset

ncol

The number of features in the dataset

iter.max

The maximum number of iteration of k-means to perform

nthread

The number of parallel threads to run

init

The type of initialization to use c("kmeanspp", "random", "forgy", "none")

tolerance

The convergence tolerance

Value

A list containing the attributes of the output. cluster: A vector of integers (from 1:k) indicating the cluster to which each point is allocated. centers: A matrix of cluster centres. size: The number of points in each cluster. iter: The number of (outer) iterations.

Author(s)

Disa Mhembere <disa@cs.jhu.edu>

Examples

1
2
3
iris.mat <- as.matrix(iris[,1:4])
k <- length(unique(iris[, dim(iris)[2]])) # Number of unique classes
km <- Skmeans(iris.mat, k)

clusternor documentation built on March 26, 2020, 7:31 p.m.