Nothing
# Perform a number of tidying tasks on the output, including renaming any
# individual row or column effects with the original names of the rows or
# columns
tidy.output <- function(results, long.df) {
results$parlist.out <- rename.pars(results$parlist.out, long.df=long.df)
if ("parlist.init" %in% names(results)) results$parlist.init <- rename.pars(results$parlist.init, long.df=long.df)
results
}
rename.pars <- function(parlist, long.df) {
## -------------- Renaming row & column parameters as needed ---------------
## Note: do NOT use grep to find row parameters because that will find rowc
## and any interactions with row or rowc
if ("ROWlevels" %in% names(attributes(long.df))) {
row_levels <- attributes(long.df)$ROWlevels
if ("row" %in% names(parlist)) {
if (length(row_levels) != length(parlist$row)) warning("Unable to rename row parameters with original data matrix row names because some rows of the data matrix were completely empty and do not feature in the clustering model.")
else {
names(parlist$row) <- row_levels
}
}
if ("colc_row" %in% names(parlist)) {
if (length(row_levels) != ncol(parlist$colc_row)) warning("Unable to rename colc_row parameters with original data matrix row names because some rows of the data matrix were completely empty and do not feature in the clustering model.")
else {
colnames(parlist$colc_row) <- row_levels
}
}
} else {
if ("row" %in% names(parlist)) names(parlist$row) <- paste0("row",1:length(parlist$row))
if ("colc_row" %in% names(parlist)) colnames(parlist$colc_row) <- paste0("row",1:length(parlist$row))
}
## Note: do NOT use grep to find col parameters because that will find colc
## and any interactions with col or colc
if ("COLlevels" %in% names(attributes(long.df))) {
col_levels <- attributes(long.df)$COLlevels
if ("col" %in% names(parlist)) {
if (length(col_levels) != length(parlist$col)) warning("Unable to rename column parameters with original data matrix column names because some columns of the data matrix were completely empty and do not feature in the clustering model.")
else {
names(parlist$col) <- col_levels
}
}
if ("rowc_col" %in% names(parlist)) {
if (length(col_levels) != ncol(parlist$rowc_col)) warning("Unable to rename rowc_col parameters with original data matrix column names because some columns of the data matrix were completely empty and do not feature in the clustering model.")
else {
colnames(parlist$rowc_col) <- col_levels
}
}
} else {
if ("col" %in% names(parlist)) names(parlist$col) <- paste0("col",1:length(parlist$col))
if ("rowc_col" %in% names(parlist)) colnames(parlist$rowc_col) <- paste0("col",1:length(parlist$col))
}
## Rename cluster parameters with the cluster numbers
if ("rowc" %in% names(parlist)) names(parlist$rowc) <- paste0("rowc_",1:length(parlist$rowc))
if ("colc" %in% names(parlist)) names(parlist$colc) <- paste0("colc_",1:length(parlist$colc))
## Number the mu values
names(parlist$mu) <- paste0("mu_",1:length(parlist$mu))
## Number the phi values, if they exist
if ("phi" %in% names(parlist)) names(parlist$phi) <- paste0("phi_",1:length(parlist$phi))
parlist
}
## Convert outputs back to column clustering format from the raw row clustering
## results
convert.output.row.to.column <- function(row.parlist) {
## Now convert the results back to column clustering
column.parlist <- row.parlist
column.parlist$colc <- column.parlist$rowc
names(column.parlist$colc) <- paste0("colc_",1:length(column.parlist$colc))
column.parlist$rowc <- NULL
## Note: using [['col']] here instead of $col BECAUSE R cannot tell between
## column.parlist$col and column.parlist$colc, but it can tell between
## column.parlist[['col']] and column.parlist[['colc']]
if (!is.null(column.parlist[['col']])) {
column.parlist$row <- column.parlist$col
column.parlist$col <- NULL
}
if (!is.null(column.parlist[['rowc_col']])) {
column.parlist$colc_row <- column.parlist$rowc_col
column.parlist$rowc_col <- NULL
}
if (!is.null(column.parlist[['rowc_cov']])) {
column.parlist$colc_cov <- column.parlist$rowc_cov
column.parlist$rowc_cov <- NULL
}
if (exists("column.parlist$pi") && !is.null(column.parlist$pi)) {
column.parlist$kappa <- column.parlist$pi
column.parlist$pi <- NULL
}
column.parlist
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.