| pvaluescbrcu | R Documentation | 
Using the Bray-Curtis dissimilarity for the dissimilarities calculation, this function takes a dataframe, a variable or variables (two or more), a p_value method such as "bootstrap" and "permutation" and returns the p_values matrix or matrices (two or more) between each pair of factors and a plot or plots (two or more) if the user select TRUE or leaves the parameter without argument.
pvaluescbrcu(
  dataset,
  formula,
  pvalue.method = "permutation",
  plot = TRUE,
  seed = NULL,
  min_group_size = 3
)
| dataset | A dataframe. | 
| formula | A variable or variables (two or more) with factors which you want to calculate the Bray-Curtis dissimilarities matrix or matrices (two or more). | 
| pvalue.method | A p_value method used to calculate the matrix or matrices (two or more), the default value is "permutation". Another method is "bootstrap". | 
| plot | if TRUE, plot the p_values heatmap or heatmaps (two or more). The default value is TRUE. | 
| seed | Optionally, set a seed for 'bootstrap' or 'permutation'. | 
| min_group_size | Minimum group size to maintain. The default value is 3,therefore groups, inside variables, with less than 3 observations will be discarded. | 
A list containing a matrix or matrices (two or more) of p_values and, optionally, the plot.
# Example with iris dataset
data(iris)
# Calculate p_values of "Species" variable in iris dataset
pvaluescbrcu(iris,~Species, pvalue.method = "bootstrap")
# Example with mtcars dataset
data(mtcars)
# Calculate p_values of "am" variable in mtcars dataset
pvaluescbrcu(mtcars,~am,
pvalue.method = "permutation", seed = 111)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.