pvaluesceucl: Calculate the p_values matrix or matrices (two or more) for...

View source: R/cmahalanobis.R

pvaluesceuclR Documentation

Calculate the p_values matrix or matrices (two or more) for each pair of factors inside variable or variables (two or more), using Euclidean distance as a base.

Description

Using the Euclidean distance for the distances calculation, this function takes a dataframe, a variable or variables (two or more), a p_value method such as "bootstrap" and "permutation" and returns the p_values matrix or matrices (two or more) between each pair of factors and a plot or plots (two or more) if the user select TRUE or leaves the parameter without argument.

Usage

pvaluesceucl(
  dataset,
  formula,
  pvalue.method = "permutation",
  plot = TRUE,
  seed = NULL,
  min_group_size = 3
)

Arguments

dataset

A dataframe.

formula

A variable or variables (two or more) with factors which you want to calculate the Euclidean distances matrix or matrices (two or more).

pvalue.method

A p_value method used to calculate the matrix or matrices (two or more), the default value is "permutation". Another method is "bootstrap".

plot

if TRUE, plot the p_values heatmap or heatmaps (two or more). The default value is TRUE.

seed

Optionally, set a seed for "bootstrap" and "permutation" methods.

min_group_size

Minimum group size to maintain. The default value is 3, therefore groups, inside variables, with less than 3 observations will be discarded.

Value

A list containing a matrix or matrices (two or more) of p_values and, optionally, the plot.

Examples

# Example with iris dataset

# Calculate p_values of "Species" variable in iris dataset
pvaluesceucl(iris,~Species, pvalue.method = "permutation"
, min_group_size = 3)

# Example with mtcars dataset

# Calculate p_values of "am" variable in mtcars dataset
pvaluesceucl(mtcars,~am + carb, 
pvalue.method = "bootstrap", 
seed = 100, min_group_size = 2)


cmahalanobis documentation built on Sept. 14, 2025, 5:09 p.m.