Description Usage Arguments Value
Does a metropolis hastings for the Erlang distribution
1 2 3 4 5 6 7 8 9 10 | mcmc.erlang(
dat,
prior.par1,
prior.par2,
init.pars,
verbose,
burnin,
n.samples,
sds = c(1, 1)
)
|
dat |
the data to fit |
prior.par1 |
mean of priors. A negative binomial (for shape) and a normal for log(scale) |
prior.par2 |
dispersion parameters for priors, dispersion for negative binomial, log scale sd for normal |
init.pars |
the starting parameters on the reporting scale |
verbose |
how often to print an update |
burnin |
how many burnin iterations to do |
n.samples |
the number of samples to keep and report back |
sds |
the standard deviations for the proposal distribution |
a matrix of n.samples X 2 parameters, on the estimation scale
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.