Nothing
#' HIV
#'
#' Microbiome abundances (60 taxa and 155 individuals) from an HIV study (Noguera-Julian et al. 2016).
#'
#' @format The dataset contains three objects:
#' \describe{
#' \item{x_HIV}{microbiome abundance matrix for 155 individuals (rows) and 60 genera (columns)}
#' \item{y_HIV}{a factor, specifying if the individual is HIV positive or (\code{Pos}) or negative (\code{Neg}).}
#' \item{MSM_HIV}{a factor, indicating sexual preferences: \code{MSM} (\emph{Men who have Sex with Men}) or not (\code{nonMSM}).}
#' }
#' @docType data
#' @name HIV
#' @references \doi{10.1016/j.ebiom.2016.01.032}
#' @keywords data
NULL
#' HIV
#'
#' Microbiome abundances (60 taxa and 155 individuals) from an HIV study (Noguera-Julian et al. 2016).
#'
#' @format The dataset contains three objects:
#' \describe{
#' \item{x_HIV}{microbiome abundance matrix for 155 individuals (rows) and 60 genera (columns)}
#' \item{y_HIV}{a factor, specifying if the individual is HIV positive or (\code{Pos}) or negative (\code{Neg}).}
#' \item{MSM_HIV}{a factor, indicating sexual preferences: \code{MSM} (\emph{Men who have Sex with Men}) or not (\code{nonMSM}).}
#' }
#' @docType data
#' @name x_HIV
#' @references \doi{10.1016/j.ebiom.2016.01.032}
#' @keywords data
NULL
#' HIV
#'
#' Microbiome abundances (60 taxa and 155 individuals) from an HIV study (Noguera-Julian et al. 2016).
#'
#' @format The dataset contains three objects:
#' \describe{
#' \item{x_HIV}{microbiome abundance matrix for 155 individuals (rows) and 60 genera (columns)}
#' \item{y_HIV}{a factor, specifying if the individual is HIV positive or (\code{Pos}) or negative (\code{Neg}).}
#' \item{MSM_HIV}{a factor, indicating sexual preferences: \code{MSM} (\emph{Men who have Sex with Men}) or not (\code{nonMSM}).}
#' }
#' @docType data
#' @name y_HIV
#' @references \doi{10.1016/j.ebiom.2016.01.032}
#' @keywords data
NULL
#' HIV
#'
#' Microbiome abundances (60 taxa and 155 individuals) from an HIV study (Noguera-Julian et al. 2016).
#'
#' @format The dataset contains three objects:
#' \describe{
#' \item{x_HIV}{microbiome abundance matrix for 155 individuals (rows) and 60 genera (columns)}
#' \item{y_HIV}{a factor, specifying if the individual is HIV positive or (\code{Pos}) or negative (\code{Neg}).}
#' \item{MSM_HIV}{a factor, indicating sexual preferences: \code{MSM} (\emph{Men who have Sex with Men}) or not (\code{nonMSM}).}
#' }
#' @docType data
#' @name MSM_HIV
#' @references \doi{10.1016/j.ebiom.2016.01.032}
#' @keywords data
NULL
#' sCD14
#'
#' Microbiome composition (60 taxa and 151 individuals) and inflammatory parameter sCD14
#' from an HIV study (Noguera-Julian et al. 2016).
#' A dataset containing the number of counts of 60 different genera in a group
#' of 151 samples (including HIV - infected and non - infected patients).
#'
#' @format The dataset contains two objects:
#' \describe{
#' \item{x_sCD14}{microbiome abundance matrix for 151 individuals (rows) and 60 genera (columns)}
#' \item{y_sCD14}{a \code{numeric} variable with the value of the inflammation parameter sCD14 for each sample}
#' }
#' @name sCD14
#' @docType data
#' @references Rivera-Pinto et al. (2018) Balances: a new perspective for microbiome analysis. mSystems 3 (4)
#' @keywords data
NULL
#' sCD14
#'
#' Microbiome composition (60 taxa and 151 individuals) and inflammatory parameter sCD14
#' from an HIV study (Noguera-Julian et al. 2016).
#' A dataset containing the number of counts of 60 different genera in a group
#' of 151 samples (including HIV - infected and non - infected patients).
#'
#' @format The dataset contains two objects:
#' \describe{
#' \item{x_sCD14}{microbiome abundance matrix for 151 individuals (rows) and 60 genera (columns)}
#' \item{y_sCD14}{a \code{numeric} variable with the value of the inflammation parameter sCD14 for each sample}
#' }
#' @name x_sCD14
#' @docType data
#' @references Rivera-Pinto et al. (2018) Balances: a new perspective for microbiome analysis. mSystems 3 (4)
#' @keywords data
NULL
#' sCD14
#'
#' Microbiome composition (60 taxa and 151 individuals) and inflammatory parameter sCD14
#' from an HIV study (Noguera-Julian et al. 2016).
#' A dataset containing the number of counts of 60 different genera in a group
#' of 151 samples (including HIV - infected and non - infected patients).
#'
#' @format The dataset contains two objects:
#' \describe{
#' \item{x_sCD14}{microbiome abundance matrix for 151 individuals (rows) and 60 genera (columns)}
#' \item{y_sCD14}{a \code{numeric} variable with the value of the inflammation parameter sCD14 for each sample}
#' }
#' @name y_sCD14
#' @docType data
#' @references Rivera-Pinto et al. (2018) Balances: a new perspective for microbiome analysis. mSystems 3 (4)
#' @keywords data
NULL
#' Crohn
#'
#' Microbiome composition at genus level from a Crohn's disease study: 48 taxa and 975 individuals
#' (662 patients with Crohn`s disease and 313 controls)
#'
#'
#'
#' @format The dataset contains two objects:
#' \describe{
#' \item{x_Crohn}{microbiome abundance matrix for 975 individuals (rows) and 48 genera (columns)}
#' \item{y_Crohn}{a \code{factor}, indicating if the sample corresponds to a case (\emph{CD}) or a control (\emph{no}).}
#' }
#' @name Crohn
#' @docType data
#' @references \doi{10.1016/j.chom.2014.02.005}
#' @keywords data
NULL
#' Crohn
#'
#' Microbiome composition at genus level from a Crohn's disease study: 48 taxa and 975 individuals
#' (662 patients with Crohn`s disease and 313 controls)
#'
#'
#'
#' @format The dataset contains two objects:
#' \describe{
#' \item{x_Crohn}{microbiome abundance matrix for 975 individuals (rows) and 48 genera (columns)}
#' \item{y_Crohn}{a \code{factor}, indicating if the sample corresponds to a case (\emph{CD}) or a control (\emph{no}).}
#' }
#' @name x_Crohn
#' @docType data
#' @references \doi{10.1016/j.chom.2014.02.005}
#' @keywords data
NULL
#' Crohn
#'
#' Microbiome composition at genus level from a Crohn's disease study: 48 taxa and 975 individuals
#' (662 patients with Crohn`s disease and 313 controls)
#'
#'
#'
#' @format The dataset contains two objects:
#' \describe{
#' \item{x_Crohn}{microbiome abundance matrix for 975 individuals (rows) and 48 genera (columns)}
#' \item{y_Crohn}{a \code{factor}, indicating if the sample corresponds to a case (\emph{CD}) or a control (\emph{no}).}
#' }
#' @name y_Crohn
#' @docType data
#' @references \doi{10.1016/j.chom.2014.02.005}
#' @keywords data
NULL
#' data_survival
#'
#' Survival Data simulated from the Crohn's disease original study: 48 taxa and 150 individuals
#'
#'
#'
#' @format The dataset contains three objects:
#' \describe{
#' \item{x}{microbiome abundance matrix for 150 individuals (rows) and 48 genera (columns)}
#' \item{Event}{a \code{numeric}, event occurrence. Vector (type: numeric or logical) specifying 0 or FALSE for no event occurrence, and 1 or TRUE for event occurrence.}
#' \item{Event_time}{a \code{numeric}, time to event or follow up time for right censored data. Must be a vector (type:numeric) specifying time to event for each sample for right censored data.}
#' }
#' @name x
#' @docType data
#' @references \doi{10.1016/j.chom.2014.02.005}
#' @keywords data
NULL
#' data_survival
#'
#' Survival Data simulated from the Crohn's disease original study: 48 taxa and 150 individuals
#'
#'
#'
#' @format The dataset contains three objects:
#' \describe{
#' \item{x}{microbiome abundance matrix for 150 individuals (rows) and 48 genera (columns)}
#' \item{Event}{a \code{numeric}, event occurrence. Vector (type: numeric or logical) specifying 0 or FALSE for no event occurrence, and 1 or TRUE for event occurrence.}
#' \item{Event_time}{a \code{numeric}, time to event or follow up time for right censored data. Must be a vector (type:numeric) specifying time to event for each sample for right censored data.}
#' }
#' @name Event
#' @docType data
#' @references \doi{10.1016/j.chom.2014.02.005}
#' @keywords data
NULL
#' data_survival
#'
#' Survival Data simulated from the Crohn's disease original study: 48 taxa and 150 individuals
#'
#'
#'
#' @format The dataset contains three objects:
#' \describe{
#' \item{x}{microbiome abundance matrix for 150 individuals (rows) and 48 genera (columns)}
#' \item{Event}{a \code{numeric}, event occurrence. Vector (type: numeric or logical) specifying 0 or FALSE for no event occurrence, and 1 or TRUE for event occurrence.}
#' \item{Event_time}{a \code{numeric}, time to event or follow up time for right censored data. Must be a vector (type:numeric) specifying time to event for each sample for right censored data.}
#' }
#' @name Event_time
#' @docType data
#' @references \doi{10.1016/j.chom.2014.02.005}
#' @keywords data
NULL
#' ecam_filtered
#'
#' Microbiome composition at genus level from Early childhood and the microbiome (ECAM) study (Bokulich et al. 2016).
#' Metadata and microbiome data were downloaded from https://github.com/caporaso-lab/longitudinal-notebooks.
#' Filtered data contains information on 42 children and 37 taxa.
#'
#'
#' @format The dataset contains three objects:
#' \describe{
#' \item{x_ecam}{microbiome abundance matrix in long format (873 rows) and 37 genera (columns)}
#' \item{taxanames}{vector containing the taxonomy of the 37 taxa}
#' \item{metadata}{matrix with information on the individuals at the observation time}
#' }
#' @name ecam_filtered
#' @docType data
#' @references Bokulich et al. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8:343
#' @keywords data
NULL
#' ecam_filtered
#'
#' Microbiome composition at genus level from Early childhood and the microbiome (ECAM) study (Bokulich et al. 2016).
#' Metadata and microbiome data were downloaded from https://github.com/caporaso-lab/longitudinal-notebooks.
#' Filtered data contains information on 42 children and 37 taxa.
#'
#'
#' @format The dataset contains three objects:
#' \describe{
#' \item{x_ecam}{microbiome abundance matrix in long format (873 rows) and 37 genera (columns)}
#' \item{taxanames}{vector containing the taxonomy of the 37 taxa}
#' \item{metadata}{matrix with information on the individuals at the observation time}
#' }
#' @name x_ecam
#' @docType data
#' @references Bokulich et al. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8:343
#' @keywords data
NULL
#' ecam_filtered
#'
#' Microbiome composition at genus level from Early childhood and the microbiome (ECAM) study (Bokulich et al. 2016).
#' Metadata and microbiome data were downloaded from https://github.com/caporaso-lab/longitudinal-notebooks.
#' Filtered data contains information on 42 children and 37 taxa.
#'
#'
#' @format The dataset contains three objects:
#' \describe{
#' \item{x_ecam}{microbiome abundance matrix in long format (873 rows) and 37 genera (columns)}
#' \item{taxanames}{vector containing the taxonomy of the 37 taxa}
#' \item{metadata}{matrix with information on the individuals at the observation time}
#' }
#' @name taxanames
#' @docType data
#' @references Bokulich et al. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8:343
#' @keywords data
NULL
#' ecam_filtered
#'
#' Microbiome composition at genus level from Early childhood and the microbiome (ECAM) study (Bokulich et al. 2016).
#' Metadata and microbiome data were downloaded from https://github.com/caporaso-lab/longitudinal-notebooks.
#' Filtered data contains information on 42 children and 37 taxa.
#'
#'
#' @format The dataset contains three objects:
#' \describe{
#' \item{x_ecam}{microbiome abundance matrix in long format (873 rows) and 37 genera (columns)}
#' \item{taxanames}{vector containing the taxonomy of the 37 taxa}
#' \item{metadata}{matrix with information on the individuals at the observation time}
#' }
#' @name metadata
#' @docType data
#' @references Bokulich et al. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8:343
#' @keywords data
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.