Nothing
#' Empathy data set by Furr (2004)
#'
#' fictitious data set on empathy ratings of students from different majors
#'
#' @format a data frame with 20 rows and 2 columns
#' \describe{
#' \item{empathy}{Empathy rating}
#' \item{major}{major of student}
#' }
#'
#' @source Furr, R. M. (2004). Interpreting effect sizes in contrast analysis.
#' Understanding Statistics, 3, 1–25.
#' https://doi.org/10.1207/s15328031us0301_1
#'
#' @usage data(furr_p4)
"furr_p4"
#' Children data set by Rosenthal and Rosnow (2000)
#'
#' Table 5.3 in Rosenthal and Rosnow (2000) on p. 129.
#'
#' @format a data frame with 36 rows and 4 columns
#' \describe{
#' \item{dv}{dependent variable}
#' \item{between}{age group (8, 10, 12 years)}
#' \item{id}{unique identifier for child}
#' \item{within}{measurement (1, 2, 3, 4)}
#' }
#'
#' @source Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and
#' Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge
#' University Press.
#'
#' @usage data(rosenthal_tbl53)
"rosenthal_tbl53"
#' Data set by Rosenthal and Rosnow (2000)
#'
#' Table 3.1 in Rosenthal and Rosnow (2000) on p. 38.
#'
#' @format a data frame with 20 rows and 2 columns
#' \describe{
#' \item{dv}{dependent variable}
#' \item{between}{group (A, B, C, D))}
#' }
#'
#' @source Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and
#' Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge
#' University Press.
#'
#' @usage data(rosenthal_tbl31)
"rosenthal_tbl31"
#' Therapy data set by Rosenthal and Rosnow (2000)
#'
#' Table 5.9 in Rosenthal and Rosnow (2000)
#'
#' @format a data frame with 12 rows and 4 columns
#' \describe{
#' \item{id}{unique identifier}
#' \item{dv}{dependent variable}
#' \item{med}{within variable: medication (treatment or placebo)}
#' \item{pt}{between variable: psychotherapy (treatment or placebo)}
#' }
#'
#' @source Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and
#' Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge
#' University Press.
#'
#' @usage data(rosenthal_tbl59)
"rosenthal_tbl59"
#' Complexity data set by Rosenthal and Rosnow (2000)
#'
#' Exercise 2 from Chapter 5 (table on p. 147) in Rosenthal and Rosnow (2000)
#'
#' @format a data frame with 12 rows and 4 columns
#' \describe{
#' \item{dv}{dependent variable: rating of degree of complexity of social
#' interaction from a series of clips}
#' \item{id}{unique identifier of participant}
#' \item{within}{within variable: complexity of interaction (low, medium
#' high)}
#' \item{between}{between variable: cognitive complexity of participant (high
#' or low)}
#' }
#'
#' @source Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and
#' Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge
#' University Press.
#'
#' @usage data(rosenthal_chap5_q2)
"rosenthal_chap5_q2"
#' Data set by Rosenthal and Rosnow (2000)
#'
#' Fictitious example of children ability, Table 6.8 in Rosenthal and Rosnow
#' (2000)
#'
#' @format a data frame with 8 rows and 4 columns
#' \describe{
#' \item{id}{unique identifier of participant}
#' \item{dv}{dependent variable}
#' \item{within}{within variable}
#' \item{between}{between variable}
#' }
#'
#' @source Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and
#' Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge
#' University Press.
#'
#' @usage data(rosenthal_tbl68)
"rosenthal_tbl68"
#' Data set by Rosenthal and Rosnow (2000)
#'
#' Fictitious example corresponding to aggregated data set on p. 141 in
#' Rosenthal and Rosnow (2000)
#'
#' @format a data frame with 12 rows and 4 columns
#' \describe{
#' \item{id}{unique identifier of participant}
#' \item{dv}{dependent variable}
#' \item{within}{within variable}
#' \item{between}{between variable}
#' }
#'
#' @source Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and
#' Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge
#' University Press.
#'
#' @usage data(rosenthal_p141)
"rosenthal_p141"
#' Music data set by Sedlmeier & Renkewitz (2018)
#'
#' Example 16.6, table 16.5 in Sedlmeier & Renkewitz (2018). Fictitious data set
#' with 8 participants that listened to no music, white noise, classical music,
#' and jazz music (within). The DV is a reading test.
#'
#' @format a data frame with 32 rows and 3 columns
#' \describe{
#' \item{reading_test}{dependent variable}
#' \item{participant}{unique id}
#' \item{music}{within variable}
#' }
#'
#' @source Sedlmeier, P., & Renkewitz, F. (2018). Forschungsmethoden und
#' Statistik für Psychologen und Sozialwissenschaftler (3rd ed.). Pearson
#' Studium.
#'
#' @usage data(sedlmeier_p537)
"sedlmeier_p537"
#' Problem solving data set by Sedlmeier & Renkewitz (2018)
#'
#' Example 16.2, table 16.1 in Sedlmeier & Renkewitz (2018). Fictitious data set
#' with 15 boys divided into three groups (no training, boys-specific material,
#' girls-specific training material). The DV is the number of solved problem
#' (similar to the training).
#'
#' @format a data frame with 15 rows and 3 columns
#' \describe{
#' \item{lsg}{dv, number of solved exercises}
#' \item{between}{group, KT=no training, JT=boys-specific, MT=girls-specific}
#' \item{lambda}{lambdas used for this example}
#' }
#'
#' @source Sedlmeier, P., & Renkewitz, F. (2018). Forschungsmethoden und
#' Statistik für Psychologen und Sozialwissenschaftler (3rd ed.). Pearson
#' Studium.
#'
#' @usage data(sedlmeier_p525)
"sedlmeier_p525"
#' Testing Effect data
#'
#' This dataset originates from a study conducted as part of a research seminar
#' in the Psychology B.Sc. program of the University of Cologne. The study
#' participants learned a list of 20 non-associated word pairs. Each half of the
#' word pair was associated with one of two sources (imaginating the word pair
#' in the sky or underwater). The final memory test (cued recall) was conducted
#' two days later. Cued recall means that one word of the word pair was
#' presented, and the participant had to recall the other word. The participants
#' were randomly assigned into one of three between-participant conditions:
#' restudy, source test, item test.
#'
#' @format a data frame with 60 rows and 3 variables:
#' \describe{
#' \item{subject}{the participant's id}
#' \item{condition}{the between-partipant condition}
#' \item{recalled}{the number of words recalled in the cued-recall test}
#' }
#'
#' @usage data(testing_effect)
"testing_effect"
#' Data from Akan et al. (2018), experiment 2B
#'
#' Data contains information from a within-subjects experiment with N = 90
#' participants. The goal of the experiment was to investigate the benefits of
#' retrieval practice on memory performance. For the entire dataset and analysis
#' scripts see: \url{https://osf.io/bqr5f/}. The data was licensed under CC-BY
#' 4.0 Melisa Akan, Aaron Benjamin.
#'
#' @format a data frame with 270 rows and 3 variables:
#' \describe{
#' \item{subject}{subject id}
#' \item{condition}{experimental condition (test, restudy, control)}
#' \item{contexts}{dependent variable}
#' }
#' @source Akan, M., Stanley, S. E., & Benjamin, A. S. (2018). Testing enhances
#' memory for context. Journal of Memory and Language, 103, 19–27.
#' \doi{10.1016/j.jml.2018.07.003}
#'
#' @usage data(akan)
"akan"
#' Data from Schwoebel et al. (2018)
#'
#' For the entire dataset and analysis scripts see:
#'
#' @format a data frame with 64 rows and 2 variables:
#' \describe{
#' \item{condition}{experimental condition (massed-same, massed-different,
#' spaced-same, spaced-different)}
#' \item{percent_recalled}{dependent variable}
#' }
#' @source Schwoebel, J., Depperman, A. K., & Scott, J. L. (2018). Distinct
#' episodic contexts enhance retrieval-based learning. Memory, 26(9),
#' 1291–1296. \doi{10.1080/09658211.2018.1464190}
#'
#' @usage data(schwoebel)
"schwoebel"
#' Haans within data example
#'
#' Fictitious data set from Haans, A. (2018). Contrast Analysis: A Tutorial.
#' https://doi.org/10.7275/7DEY-ZD62
#'
#' @format a data frame with 20 rows and 3 variables:
#' \describe{
#' \item{person}{person id}
#' \item{name}{group name (sitting row 1 to 4)}
#' \item{value}{dv, final exam grade}
#' }
#'
#' @usage data(haans_within1by4)
"haans_within1by4"
#' Data from Maraver et al. (2021)
#'
#' The dataset originates from a between-subjects experiment with N = 120
#' participants. The experiment aimed to examine whether instructions to imagine
#' the study material could reduce false memories. Full dataset and analysis
#' scripts are available at:
#' \url{https://osf.io/v8apj/?view_only=9969d17536f54053a72be19c050c4767}.
#'
#' @format a data frame with 120 rows and 3 variables:
#' \describe{
#' \item{id}{subject id}
#' \item{condition}{experimental condition (imagine, memorize, pay_attention)}
#' \item{prop_recalled}{dependent variable}
#' }
#' @source Maraver, M. J., Lapa, A., Garcia-Marques, L., Carneiro, P., & Raposo,
#' A. (2021). Imagination Reduces False Memories for Everyday Action
#' Sentences: Evidence From Pragmatic Inferences. Frontiers in Psychology, 12.
#' \doi{10.3389/fpsyg.2021.668899}
#'
#' @usage data(maraver)
"maraver"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.