View source: R/collinear_stats.R
| collinear_stats | R Documentation |
Computes the the minimum, mean, maximum, and quantiles 0.05, 0.25, median (0.5), 0.75, and 0.95 of the correlations and variance inflation factors in a given dataframe. Wraps the functions cor_stats() and vif_stats()
collinear_stats(df = NULL, predictors = NULL, quiet = FALSE, ...)
df |
(required; dataframe, tibble, or sf) A dataframe with predictors or the output of |
predictors |
(optional; character vector or NULL) Names of the
predictors in |
quiet |
(optional; logical) If FALSE, messages are printed. Default: FALSE. |
... |
(optional) Internal args (e.g. |
dataframe with columns method (with values "correlation" and "vif"), statistic and value
Other multicollinearity_assessment:
cor_clusters(),
cor_cramer(),
cor_df(),
cor_matrix(),
cor_stats(),
vif(),
vif_df(),
vif_stats()
data(
vi_smol,
vi_predictors_numeric
)
## OPTIONAL: parallelization setup
## irrelevant when all predictors are numeric
## only worth it for large data with many categoricals
# future::plan(
# future::multisession,
# workers = future::availableCores() - 1
# )
## OPTIONAL: progress bar
# progressr::handlers(global = TRUE)
x <- collinear_stats(
df = vi_smol,
predictors = vi_predictors_numeric
)
x
## OPTIONAL: disable parallelization
#future::plan(future::sequential)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.