View source: R/f_categorical_rf.R
| f_categorical_rf | R Documentation |
Fits a univariate random forest model y ~ x with the character or factor response y and the numeric, character or factor predictor x using ranger::ranger() and returns the Cramer's V (see cor_cramer()) between the observed responses and the model predictions. Cases are weighted with case_weights() to prevent issues arising from class imbalance.
Cases are weighted with case_weights() to prevent issues arising from class imbalance.
Supports cross-validation via the arguments arguments cv_training_fraction (numeric between 0 and 1) and cv_iterations (integer between 1 and n) introduced via ellipsis (...). See preference_order() for further details.
f_categorical_rf(df, ...)
df |
(required, dataframe) with columns:
|
... |
(optional) Accepts the arguments |
numeric or numeric vector: Cramer's V
Other preference_order_functions:
f_binomial_gam(),
f_binomial_glm(),
f_binomial_rf(),
f_count_gam(),
f_count_glm(),
f_count_rf(),
f_numeric_gam(),
f_numeric_glm(),
f_numeric_rf(),
preference_order()
data(vi_smol)
df <- data.frame(
y = vi_smol[["vi_factor"]],
x = vi_smol[["soil_type"]]
)
#no cross-validation
f_categorical_rf(df = df)
#cross-validation
f_categorical_rf(
df = df,
cv_training_fraction = 0.5,
cv_iterations = 10
)
#numeric predictor
df <- data.frame(
y = vi_smol[["vi_categorical"]],
x = vi_smol[["swi_max"]]
)
f_categorical_rf(df = df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.