Nothing
#' calculateReliability: determine the reliability and SEM per Type
#'
#' @param mydata A dataframe containing columns ID, Type, Score (numeric)
#' @param n A vector containing for each Type the number of scores or assessments, e.g. averages, requirements.
#'
#' @return A list containing 2 vectors; one vector with the reliability coefficient of each Type, the other vector with the SEM values for each Type
#' @export
#'
#' @examples
#' rel <- calculateReliability(mydata, n=c("A"=3,"B"=3,C="2"))
calculateReliability <- function(mydata, n) {
checkDatasets(mydata, n)
varCovMatrix <- calculateVarCov(mydata, n)
types <- sort(unique(mydata$Type))
# initialize variables
E_rho2_vector <- matrix(0, nrow=length(types), ncol=1, dimnames=list(types, "value"))
SEM_vector <- matrix(0, nrow=length(types), ncol=1, dimnames=list(types, "value"))
# determine the reliability and SEM per Type
for(aType in types) {
E_rho2_vector[aType, "value"] <- varCovMatrix$S_p[aType,aType]/(varCovMatrix$S_p[aType,aType] + varCovMatrix$S_delta[aType,aType])
SEM_vector[aType, "value"] <- sqrt(varCovMatrix$S_delta[aType,aType])
}
return(list("E_rho2_vector"=E_rho2_vector,"SEM_vector"=SEM_vector))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.