| Beran | R Documentation | 
Computes the conditional survival probability P(T > y|Z = z)
Beran( time, status, covariate, delta, x, y, kernel = "gaussian", bw, lower.tail = FALSE )
| time | The survival time of the process. | 
| status | Censoring indicator of the total time of the process; 0 if the total time is censored and 1 otherwise. | 
| covariate | Covariate values for obtaining estimates for the conditional probabilities. | 
| delta | Censoring indicator of the covariate. | 
| x | The first time (or covariate value) for obtaining estimates for the conditional probabilities. If missing, 0 will be used. | 
| y | The total time for obtaining estimates for the conditional probabilities. | 
| kernel | A character string specifying the desired kernel. See details below for possible options. Defaults to "gaussian" where the gaussian density kernel will be used. | 
| bw | A single numeric value to compute a kernel density bandwidth. | 
| lower.tail | logical; if FALSE (default), probabilities are P(T > y|Z = z) otherwise, P(T <= y|Z = z). | 
Possible options for argument window are "gaussian", "epanechnikov", "tricube", "boxcar", "triangular", "quartic" or "cosine".
Luis Meira-Machado and Marta Sestelo
R. Beran. Nonparametric regression with randomly censored survival data. Technical report, University of California, Berkeley, 1981.
obj <- with(colonCS, survCS(time1, event1, Stime, event)) #P(T>y|age=45) library(KernSmooth) h <- dpik(colonCS$age) Beran(time = obj$Stime, status = obj$event, covariate = colonCS$age, x = 45, y = 730, bw = h) #P(T<=y|age=45) Beran(time = obj$Stime, status = obj$event, covariate = colonCS$age, x = 45, y = 730, bw = h, lower.tail = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.