convoSPAT: Convolution-Based Nonstationary Spatial Modeling
Version 1.2

Fits convolution-based nonstationary Gaussian process models to point-referenced spatial data. The nonstationary covariance function allows the user to specify the underlying correlation structure and which spatial dependence parameters should be allowed to vary over space: the anisotropy, nugget variance, and process variance. The parameters are estimated via maximum likelihood, using a local likelihood approach. Also provided are functions to fit stationary spatial models for comparison, calculate the Kriging predictor and standard errors, and create various plots to visualize nonstationarity.

AuthorMark D. Risser [aut, cre]
Date of publication2017-04-12 22:30:56 UTC
MaintainerMark D. Risser <markdrisser@gmail.com>
LicenseMIT + file LICENSE
Version1.2
URL http://github.com/markdrisser/convoSPAT
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("convoSPAT")

Popular man pages

Aniso_fit: Fit the stationary spatial model
evaluate_CV: Evaluation criteria
kernel_cov: Calculate a kernel covariance matrix.
make_aniso_loglik_kappa: Constructor functions for local parameter estimation.
make_global_loglik1: Constructor functions for global parameter estimation.
mc_N: Calculate local sample sizes.
plot.Aniso: Plot of the estimated correlations from the stationary model.
See all...

All man pages Function index File listing

Man pages

Aniso_fit: Fit the stationary spatial model
evaluate_CV: Evaluation criteria
f_mc_kernels: Calculate mixture component kernel matrices.
kernel_cov: Calculate a kernel covariance matrix.
make_aniso_loglik: Constructor functions for local parameter estimation.
make_aniso_loglik_kappa: Constructor functions for local parameter estimation.
make_global_loglik1: Constructor functions for global parameter estimation.
make_global_loglik1_kappa: Constructor functions for global parameter estimation.
make_global_loglik2: Constructor functions for global parameter estimation.
make_global_loglik2_kappa: Constructor functions for global parameter estimation.
make_global_loglik3: Constructor functions for global parameter estimation.
make_global_loglik3_kappa: Constructor functions for global parameter estimation.
make_global_loglik4_kappa: Constructor functions for global parameter estimation.
mc_N: Calculate local sample sizes.
NSconvo_fit: Fit the nonstationary spatial model
NSconvo_sim: Simulate data from the nonstationary model.
plot.Aniso: Plot of the estimated correlations from the stationary model.
plot.NSconvo: Plot from the nonstationary model.
predict.Aniso: Obtain predictions at unobserved locations for the stationary...
predict.NSconvo: Obtain predictions at unobserved locations for the...
simdata: Simulated nonstationary dataset
summary.Aniso: Summarize the stationary model fit.
summary.NSconvo: Summarize the nonstationary model fit.
US.mc.grids: Mixture component grids for the western United States
USprecip97: Annual precipitation measurements from the western United...
US.prediction.locs: Prediction locations for the western United States

Functions

Aniso_fit Man page Source code
NSconvo_fit Man page Source code
NSconvo_sim Man page Source code
US.mc.grids Man page
US.prediction.locs Man page
USprecip97 Man page
evaluate_CV Man page Source code
f_mc_kernels Man page Source code
kernel_cov Man page Source code
make_aniso_loglik Man page Source code
make_aniso_loglik_kappa Man page Source code
make_global_loglik1 Man page Source code
make_global_loglik1_kappa Man page Source code
make_global_loglik2 Man page Source code
make_global_loglik2_kappa Man page Source code
make_global_loglik3 Man page Source code
make_global_loglik3_kappa Man page Source code
make_global_loglik4_kappa Man page Source code
mc_N Man page Source code
plot.Aniso Man page Source code
plot.NSconvo Man page Source code
predict.Aniso Man page Source code
predict.NSconvo Man page Source code
simdata Man page
summary.Aniso Man page Source code
summary.NSconvo Man page Source code

Files

NAMESPACE
data
data/USpredictionlocs.RData
data/simdata.RData
data/USprecip97.RData
data/USmcgrids.RData
R
R/convoSPAT_simulate.R
R/convoSPAT_summplot.R
R/convoSPAT_fitpred.R
R/convoSPAT_paramEst.R
R/DataDocumentation.R
MD5
DESCRIPTION
man
man/make_global_loglik2_kappa.Rd
man/NSconvo_sim.Rd
man/predict.NSconvo.Rd
man/Aniso_fit.Rd
man/predict.Aniso.Rd
man/make_global_loglik1_kappa.Rd
man/mc_N.Rd
man/kernel_cov.Rd
man/plot.NSconvo.Rd
man/NSconvo_fit.Rd
man/f_mc_kernels.Rd
man/US.prediction.locs.Rd
man/simdata.Rd
man/summary.NSconvo.Rd
man/summary.Aniso.Rd
man/evaluate_CV.Rd
man/plot.Aniso.Rd
man/make_global_loglik2.Rd
man/US.mc.grids.Rd
man/make_global_loglik1.Rd
man/make_global_loglik3.Rd
man/make_global_loglik4_kappa.Rd
man/make_aniso_loglik_kappa.Rd
man/make_aniso_loglik.Rd
man/USprecip97.Rd
man/make_global_loglik3_kappa.Rd
LICENSE
convoSPAT documentation built on May 19, 2017, 10:36 p.m.

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.