| CLcop | R Documentation | 
The Clayton copula (Joe, 2014, p. 168) is
\mathbf{C}_{\Theta}(u,v) = \mathbf{CL}(u,v) = \mathrm{max}\bigl[(u^{-\Theta}+v^{-\Theta}-1; 0)\bigr]^{-1/\Theta}\mbox{,}
where \Theta \in [-1,\infty), \Theta \ne 0. The copula, as \Theta \rightarrow -1^{+} limits, to the countermonotonicity coupla (\mathbf{W}(u,v); W), as \Theta \rightarrow 0 limits to the independence copula (\mathbf{\Pi}(u,v); P), and as \Theta \rightarrow \infty, limits to the comonotonicity copula (\mathbf{M}(u,v);  M). The parameter \Theta is readily computed from a Kendall Tau (tauCOP) by \tau_\mathbf{C} = \Theta/(\Theta+2).
CLcop(u, v, para=NULL, tau=NULL, ...)
| u | Nonexceedance probability  | 
| v | Nonexceedance probability  | 
| para | A vector (single element) of parameters—the  | 
| tau | Optional Kendall Tau; and | 
| ... | Additional arguments to pass. | 
Value(s) for the copula are returned. Otherwise if tau is given, then the \Theta is computed and a list having
| para | The parameter  | 
| tau | Kendall Tau. | 
and if para=NULL and tau=NULL, then the values within u and v are used to compute Kendall Tau and then compute the parameter, and these are returned in the aforementioned list.
W.H. Asquith
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
M, P, W
# Lower tail dependency of Theta = pi --> 2^(-1/pi) = 0.8020089 (Joe, 2014, p. 168)
taildepCOP(cop=CLcop, para=pi)$lambdaL # 0.80201
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.