| convexCOP | R Documentation | 
The convex composition of N number of copulas (Salvadori et al., p. 132, 2007) provides for complexity extension between coupla families. Let \mathbf{C}_{i} be a copula with respective vector of parameters \Theta_i, then the convex combination of these copulas is
\mathbf{C}^{\times}_{\omega}(u,v) = \sum_{i=1}^N \omega_i \mathbf{C}_{i}(u, v; \Theta_i)\mbox{,}
where \sum_{i=1}^N \omega_i = 1 for N number of copulas. The weights \omega are silently treated as 1/N if the weights element is absent in the R list argument para.
convexCOP(u,v, para, ...)
| u | Nonexceedance probability  | 
| v | Nonexceedance probability  | 
| para | A special parameter  | 
| ... | Additional arguments to pass to the copula. | 
Value(s) for the convex combination copula is returned.
The following descriptions list in detail the structure and content of the para argument but please reference the Examples to see the i notation:
copi— The ith copula;
parai— Vector of parameters \Theta_i; and
weights— Optional vector of weights whose sum will be rescaled to unity; default is 1/N for each weight.
W.H. Asquith
Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature—An approach using copulas: Springer, 289 p.
COP, breveCOP, convex2COP, composite1COP, composite2COP, composite3COP, glueCOP
# The copulas and parameters are named by sequence number appended to cop and para.
para1 <- list(cop1=GHcop, cop2=PLcop, para1=8, para2=.03, weights=c(.8,.2))
para2 <- list(cop1=GHcop, cop2=PLcop, para1=8, para2=.03, alpha=0.8)
H <- convexCOP( 0.6,0.4, para=para1)
G <- convex2COP(0.6,0.4, para=para2)
if( abs(H-G) <= 1e-6 )  message("They are equal.")
## Not run: 
# A convex combination of three copulas. A GHcop with strong positive association and
# a Plackett with strong negative association, and independence. The weights favor the
# GHcop but a little outlier and expansive spread is superimposed on the core trend.
para <- list(cop1=GHcop, cop2=PLcop, cop3=P,
             para1=8, para2=.03, para3=NA, weights=c(40,7,10))
UV <- simCOP(1000, cop=convexCOP, para=para, lwd=0.8) #
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.