Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----eval=FALSE---------------------------------------------------------------
# install.packages("cornet")
## ----eval=FALSE---------------------------------------------------------------
# #install.packages("devtools")
# devtools::install_github("rauschenberger/cornet")
## -----------------------------------------------------------------------------
library(cornet)
## ----eval=FALSE---------------------------------------------------------------
# set.seed(1)
# n <- 100; p <- 500
# X <- matrix(rnorm(n*p),nrow=n,ncol=p)
# beta <- rbinom(n=p,size=1,prob=0.05)
# y <- rnorm(n=n,mean=X%*%beta)
## ----eval=FALSE---------------------------------------------------------------
# model <- cornet(y=y,cutoff=0,X=X)
# model
## ----eval=FALSE---------------------------------------------------------------
# coef <- coef(model)
## ----eval=FALSE---------------------------------------------------------------
# predict <- predict(model,newx=X)
## ----eval=FALSE---------------------------------------------------------------
# cv.cornet(y=y,cutoff=0,X=X)
## ----eval=FALSE---------------------------------------------------------------
# #install.packages("BiocManager")
# #BiocManager::install(c("GEOquery","Biobase"))
# data <- GEOquery::getGEO(GEO="GSE80599")[[1]]
# pheno <- Biobase::pData(data)
# y <- as.numeric(pheno$`updrs-mds3.12 score:ch1`)
# age <- as.numeric(pheno$`age at examination (years):ch1`)
# gender <- ifelse(pheno$`gender:ch1`=="Female",1,0)
# X <- cbind(age,gender,t(Biobase::exprs(data)))
## ----eval=FALSE---------------------------------------------------------------
# pvalue <- apply(X,2,function(x) cor.test(x,y)$p.value)
# min(p.adjust(pvalue))
# hist(pvalue)
## ----eval=FALSE---------------------------------------------------------------
# cor <- abs(cor(y,X,method="spearman"))
# X <- X[,cor>0.3] # forbidden!
## ----eval=FALSE---------------------------------------------------------------
# #install.packages("BiocManager")
# #BiocManager::install("GEOquery")
# files <- GEOquery::getGEOSuppFiles("GSE97644")
# pheno <- read.csv(textConnection(readLines(rownames(files)[1])))
# y <- pheno$MOCA.Score
# gender <- ifelse(pheno$Gender=="Female",1,0)
# age <- pheno$Age
# geno <- t(read.csv(textConnection(readLines(rownames(files)[2])),row.names=1))
# X <- cbind(gender,age,geno)
## ----eval=FALSE---------------------------------------------------------------
# net <- cornet::cornet(y=y,cutoff=25,X=X)
# set.seed(1)
# cornet:::cv.cornet(y=y,cutoff=25,X=X)
## ----eval=FALSE---------------------------------------------------------------
# files <- GEOquery::getGEOSuppFiles("GSE95640")
# X <- t(read.csv(textConnection(readLines(rownames(files)[1])),row.names=1))
# y <- GEOquery::getGEO(GEO="GSE95640")[[1]] # no numeric outcome
## ----eval=FALSE---------------------------------------------------------------
# data <- GEOquery::getGEO(GEO="GSE109597")[[1]]
# y <- as.numeric(Biobase::pData(data)$"bmi:ch1")
# X <- t(Biobase::exprs(data))
# cornet:::cv.cornet(y=y,cutoff=25,X=X,alpha=0)
## ----eval=FALSE---------------------------------------------------------------
# #install.packages("BiocManager")
# #BiocManager::install("mixOmics")
# set.seed(1)
# data(liver.toxicity,package="mixOmics")
# X <- as.matrix(liver.toxicity$gene)
# Y <- liver.toxicity$clinic
# cornet <- cornet::cornet(y=Y$BUN.mg.dL.,cutoff=15,X=X)
# cornet:::cv.cornet(y=Y$BUN.mg.dL.,cutoff=15,X=X)
#
# loss <- list()
# for(i in seq_along(Y)){
# loss[[i]] <- cornet:::cv.cornet(y=Y[[i]],cutoff=median(Y[[i]]),alpha=0,X=X)
# }
# sapply(loss,function(x) x$deviance)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.