Nothing
partialcor <- function(R, indx, indy, indz, n) {
## R is a correlation matrix
## i and j denote the two variables whose conditional correlation is to be estimated
## k denotes the set of conditioning variables
d <- length(indz)
if ( d == 1 ) {
a1 <- R[indx, indy] ; a2 <- R[indx, indz]
a3 <- R[indy, indz]
r <- (a1 - a2 * a3) / sqrt( (1 - a3^2) * (1 - a2^2) )
} else if ( d > 1 ) {
rho <- solve( R[c(indx, indy, indz), c(indx, indy, indz)] )
r <- - rho[1, 2] / sqrt(rho[1, 1] * rho[2, 2])
}
if ( abs(r) > 1 ) r <- 0.99999
stat <- 0.5 * log( (1 + r) / (1 - r) ) * sqrt( n - d - 3 )
pvalue <- 2 * pt( abs(stat), n - d - 3, lower.tail = FALSE )
res <- c(r, pvalue)
names(res) <- c("partial cor", "p-value")
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.