Nothing
require("plyr")
require("abind")
data(iris)
C <- daply(iris, "Species", function(x) cov(x[, -ncol(x)]))
C <- aperm(C, c(2, 3, 1)) # put the 1st dimension to the end
dim(C)
dimnames(C)
mod <- cpc(C)
str(mod)
round(mod$CPC, 2)
# See Trendafilov (2010). Stepwise estimation of common principal components.
# Computational Statistics & Data Analysis, 54(12), 3446-3457.
# doi:10.1016/j.csda.2010.03.010
# p. 10, Example 2
#
# [,1] [,2] [,3] [,4]
#[1,] 0.75 -0.09 0.63 0.20
#[2,] 0.44 0.79 -0.33 -0.26
#[3,] 0.47 -0.60 -0.54 -0.34
#[4,] 0.15 0.02 -0.45 0.88
#
# The eigenvectors must be the same, as the default method in `cpc` function
# is the power algorithm proposed by Trendafilov.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.