R/kcv.rda.R

Defines functions kcv.rda

Documented in kcv.rda

kcv.rda <-
  function(x, y, foldid = NULL, rda.grid, nfolds = NULL, prior = NULL,
           regularization = "S", genelist = FALSE, trace = FALSE, 
           parallel = FALSE) 
{
    kcvcheck(y = y, nfolds = nfolds, parallel = parallel, foldid = foldid)
    if (is.null(prior)) {prior <- (table(y) / length(y))}
    grid.row <- nrow(rda.grid)
    cv.rda <- matrix(rep(0, grid.row * nfolds), ncol = nfolds)
    if (parallel == T) {
      cv.rda <- foreach(gg = 1:nfolds, .combine = cbind, 
                        .packages = 'rda') %dopar% {
                        x.train <- as.matrix(x[which(foldid != gg), ])
                        y.train <- y[which(foldid != gg)]
                        x.test <- as.matrix(x[which(foldid == gg), ])
                        y.test <- y[which(foldid == gg)]
                        stortune <- matrix(rep(0, grid.row), ncol = 1)
                        for (yy in 1:grid.row) {
                           rda.fit <- rda(x = t(x.train), y = y.train, 
                                          prior = prior, 
                                          alpha = rda.grid[yy, 1],
                                          delta = rda.grid[yy, 2],
                                          regularization = regularization,
                                          genelist = genelist, trace = trace)
                           rda.pred <- predict(rda.fit, x = t(x.train), 
                                               y = y.train, xnew = t(x.test), 
                                               alpha = rda.grid[yy, 1], 
                                               delta = rda.grid[yy, 2], 
                                               type = "class") - 1
                           stortune[yy, 1] <- 1 - mean(rda.pred == y.test) 
                        }
                        cv.rda[, gg] <- stortune
                }
    } else {
      for (gg in 1:nfolds) {
         x.train <- as.matrix(x[which(foldid != gg), ])
         y.train <- y[which(foldid != gg)]
         x.test <- as.matrix(x[which(foldid == gg), ])
         y.test <- y[which(foldid == gg)]
         stortune <- matrix(rep(0, grid.row), ncol = 1)
         for (yy in 1:grid.row) {
            rda.fit <- rda(x = t(unlist(x.train)), y = unlist(y.train), 
                           prior = prior, alpha = rda.grid[yy, 1], 
                           delta = rda.grid[yy, 2], 
                           regularization = regularization, genelist = genelist, 
                           trace = trace)
            rda.pred <- predict(rda.fit, x = t(x.train), y = y.train, 
                                xnew = t(x.test), alpha = rda.grid[yy, 1], 
                                delta = rda.grid[yy, 2], type = "class") - 1
            stortune[yy, 1] <- 1 - mean(rda.pred == y.test) 
         }
         cv.rda[, gg] <- stortune
      }
    }
    rda.mean <- apply(cv.rda, 1, mean)
    minid <- which.min(rda.mean)
    rda.fit.best <- rda(x = t(x), y = y, prior = prior, 
                        alpha = rda.grid[minid, 1], delta = rda.grid[minid, 2],
                        regularization = regularization, genelist = genelist, 
                        trace = trace)
    return(list(rda.grid.id = minid, rda.fit = rda.fit.best, 
                error = rda.mean[minid]))
}

Try the cpfa package in your browser

Any scripts or data that you put into this service are public.

cpfa documentation built on Aug. 8, 2025, 6:24 p.m.