Nothing
# Internal function to compute sample loss
compute_loss <- function(pred, measure) {
if (inherits(pred, "Prediction")) {
truth <- pred$truth
response <- pred$response
prob <- pred$prob
} else {
truth <- do.call(c, lapply(pred, function(x) x$truth))
response <- do.call(c, lapply(pred, function(x) x$response))
prob <- do.call(rbind, lapply(pred, function(x) x$prob))
}
if (measure$id == "regr.mse") {
# Squared errors
loss <- (truth - response)^2
} else if (measure$id == "regr.mae") {
# Absolute errors
loss <- abs(truth - response)
} else if (measure$id == "classif.logloss") {
# Logloss
eps <- 1e-15
ii <- match(as.character(truth), colnames(prob))
p <- prob[cbind(seq_len(nrow(prob)), ii)]
p <- pmax(eps, pmin(1 - eps, p))
loss <- -log(p)
} else if (measure$id == "classif.ce") {
# Misclassification error
loss <- 1*(truth != response)
} else if (measure$id == "classif.bbrier") {
# Brier score
# First level is positive class
y <- as.numeric(as.numeric(truth) == 1)
loss <- (y - prob[, 1])^2
} else {
stop("Unknown measure.")
}
loss
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.