Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
set.seed(2022)
old_digits <- options(digits=2)
## ----first_example------------------------------------------------------------
library(mlr3)
library(mlr3learners)
library(cpi)
cpi(task = tsk("wine"),
learner = lrn("classif.ranger", predict_type = "prob", num.trees = 10),
resampling = rsmp("cv", folds = 5))
## ----glmnet_example-----------------------------------------------------------
cpi(task = tsk("wine"),
learner = lrn("classif.glmnet", predict_type = "prob", lambda = 0.01),
resampling = rsmp("holdout"))
## ----glmnet_example_ce--------------------------------------------------------
cpi(task = tsk("wine"),
learner = lrn("classif.glmnet", lambda = 0.01),
resampling = rsmp("holdout"),
measure = msr("classif.ce"))
## ----first_example_fisher-----------------------------------------------------
cpi(task = tsk("wine"),
learner = lrn("classif.ranger", predict_type = "prob", num.trees = 10),
resampling = rsmp("cv", folds = 5),
test = "fisher")
## ----example_seqknockoff, eval=FALSE------------------------------------------
# mytask <- as_task_regr(iris, target = "Petal.Length")
# cpi(task = mytask, learner = lrn("regr.ranger", num.trees = 10),
# resampling = rsmp("cv", folds = 5),
# knockoff_fun = seqknockoff::knockoffs_seq)
## ----example_seqknockoff_xtilde, eval=FALSE-----------------------------------
# library(seqknockoff)
# x_tilde <- knockoffs_seq(iris[, -3])
# mytask <- as_task_regr(iris, target = "Petal.Length")
# cpi(task = mytask, learner = lrn("regr.ranger", num.trees = 10),
# resampling = rsmp("cv", folds = 5),
# x_tilde = x_tilde)
## ----glmnet_example_group-----------------------------------------------------
cpi(task = tsk("iris"),
learner = lrn("classif.glmnet", predict_type = "prob", lambda = 0.01),
resampling = rsmp("holdout"),
groups = list(Sepal = 1:2, Petal = 3:4))
## ----first_example_parallel, eval=FALSE---------------------------------------
# doParallel::registerDoParallel(4)
# cpi(task = tsk("wine"),
# learner = lrn("classif.ranger", predict_type = "prob", num.trees = 10),
# resampling = rsmp("cv", folds = 5))
## ----include=FALSE------------------------------------------------------------
options(old_digits)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.