knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
This vignette is adapted from the official Armadillo documentation.
Obtain a limited number of eigenvalues and eigenvectors of sparse symmetric real
matrix X
.
Usage:
vec eigval = eigs_sym(X, k) vec eigval = eigs_sym(X, k, form) vec eigval = eigs_sym(X, k, form, opts) vec eigval = eigs_sym(X, k, sigma) vec eigval = eigs_sym(X, k, sigma, opts) eigs_sym(eigval, X, k) eigs_sym(eigval, X, k, form) eigs_sym(eigval, X, k, form, opts) eigs_sym(eigval, X, k, sigma) eigs_sym(eigval, X, k, sigma, opts) eigs_sym(eigval, eigvec, X, k) eigs_sym(eigval, eigvec, X, k, form) eigs_sym(eigval, eigvec, X, k, form, opts) eigs_sym(eigval, eigvec, X, k, sigma) eigs_sym(eigval, eigvec, X, k, sigma, opts)
k
specifies the number of eigenvalues and eigenvectors.
The argument form
is optional and is one of the following:
"lm"
: obtain eigenvalues with largest magnitude (default operation)."sm"
: obtain eigenvalues with smallest magnitude (see the caveats below)."la"
: obtain eigenvalues with largest algebraic value.The argument sigma
is optional; if sigma
is given, eigenvalues closest to
sigma
are found via shift-invert mode. Note that to use sigma
, both
ARMA_USE_ARPACK
and ARMA_USE_SUPERLU
must be enabled in
armadillo/config.hpp
.
The opts
argument is optional; opts
is an instance of the eigs_opts
structure:
struct eigs_opts { double tol; // default: 0 unsigned int maxiter; // default: 1000 unsigned int subdim; // default: max(2*k+1, 20) };
tol
specifies the tolerance for convergence.maxiter
specifies the maximum number of Arnoldi iterations.subdim
specifies the dimension of the Krylov subspace, with the constraint
k < subdim <= X.n_rows
; the recommended value is subdim >= 2*k
.The eigenvalues and corresponding eigenvectors are stored in eigval
and
eigvec
, respectively.
If X
is not square sized, an error is thrown.
If the decomposition fails:
eigval = eigs_sym(X,k)
resets eigval
and throws an error.eigs_sym(eigval,X,k)
resets eigval
and returns a bool set to false (an
error is not thrown).eigs_sym(eigval,eigvec,X,k)
resets eigval
and eigvec
and returns a bool
set to false (an error is not thrown).Caveats:
opts.subdim
(Krylov
subspace dimension), and, as secondary options, try increasing opts.maxiter
(maximum number of iterations), and/or opts.tol
(tolerance for convergence),
and/or k
(number of eigenvalues)."sm"
form, use the shift-invert mode with sigma
set to 0.0
.-fopenmp
in GCC and clang).[[cpp11::register]] list eig_sym2_(const doubles_matrix<>& x, const char* method, const int& k) { sp_mat X = as_SpMat(x); sp_mat Y = X.t() * X; vec eigval; mat eigvec; eigs_opts opts; opts.maxiter = 10000; bool ok = eigs_sym(eigval, eigvec, Y, k, method, opts); writable::list out(3); out[0] = writable::logicals({ok}); out[1] = as_doubles(eigval); out[2] = as_doubles_matrix(eigvec); return out; }
Obtain a limited number of eigenvalues and eigenvectors of sparse general
(non-symmetric/non-hermitian) square matrix X
.
Usage:
cx_vec eigval = eigs_gen(X, k) cx_vec eigval = eigs_gen(X, k, form) cx_vec eigval = eigs_gen(X, k, sigma) cx_vec eigval = eigs_gen(X, k, form, opts) cx_vec eigval = eigs_gen(X, k, sigma, opts) eigs_gen(eigval, X, k) eigs_gen(eigval, X, k, form) eigs_gen(eigval, X, k, sigma) eigs_gen(eigval, X, k, form, opts) eigs_gen(eigval, X, k, sigma, opts) eigs_gen(eigval, eigvec, X, k) eigs_gen(eigval, eigvec, X, k, form) eigs_gen(eigval, eigvec, X, k, sigma) eigs_gen(eigval, eigvec, X, k, form, opts) eigs_gen(eigval, eigvec, X, k, sigma, opts)
k
specifies the number of eigenvalues and eigenvectors.
The argument form
is optional; form
is one of the following:
"lm"
: obtain eigenvalues with largest magnitude (default operation)."sm"
: obtain eigenvalues with smallest magnitude (see the caveats below)."lr"
: obtain eigenvalues with largest real part."sr"
: obtain eigenvalues with smallest real part."li"
: obtain eigenvalues with largest imaginary part."si"
: obtain eigenvalues with smallest imaginary part.The argument sigma
is optional; if sigma
is given, eigenvalues closest to
sigma
are found via shift-invert mode. Note that to use sigma
, both
ARMA_USE_ARPACK
and ARMA_USE_SUPERLU
must be enabled in
armadillo/config.hpp
.
The opts
argument is optional; opts
is an instance of the eigs_opts
structure:
struct eigs_opts { double tol; // default: 0 unsigned int maxiter; // default: 1000 unsigned int subdim; // default: max(2*k+1, 20) };
tol
specifies the tolerance for convergence.maxiter
specifies the maximum number of Arnoldi iterations.subdim
specifies the dimension of the Krylov subspace, with the constraint
k < subdim <= X.n_rows
; the recommended value is subdim >= 2*k
.The eigenvalues and corresponding eigenvectors are stored in eigval
and
eigvec
, respectively.
If X
is not square sized, an error is thrown.
If the decomposition fails:
eigval = eigs_gen(X, k)
resets eigval
and throws an error.eigs_gen(eigval, X, k)
resets eigval
and returns a bool set to false (an
error is not thrown).eigs_gen(eigval,eigvec, X, k)
resets eigval
and eigvec
and returns a
bool set to false (an error is not thrown).Caveats:
opts.subdim
(Krylov
subspace dimension), and, as secondary options, try increasing opts.maxiter
(maximum number of iterations), and/or opts.tol
(tolerance for convergence),
and/or k
(number of eigenvalues)."sm"
form, use the shift-invert mode with sigma
set to 0.0
.[[cpp11::register]] list eig_gen2_(const doubles_matrix<>& x, const char* method, const int& k) { sp_mat X = as_SpMat(x); cx_vec eigval; cx_mat eigvec; eigs_opts opts; opts.maxiter = 10000; bool ok = eigs_gen(eigval, eigvec, X, k, method, opts); writable::list out(3); out[0] = writable::logicals({ok}); out[1] = as_complex_doubles(eigval); out[2] = as_complex_matrix(eigvec); return out; }
Obtain a limited number of singular values and singular vectors (truncated SVD) of a sparse matrix.
The singular values and vectors are calculated via sparse eigen decomposition of:
$$ \begin{bmatrix} 0_{n \times n} & X \ X^T & 0_{m \times m} \end{bmatrix} $$
where $n$ and $m$ are the number of rows and columns of X
, respectively.
Usage:
vec s = svds(X, k) vec s = svds(X, k, tol) svds(vec s, X, k) svds(vec s, X, k, tol) svds(mat U, vec s, mat V, sp_mat X, k) svds(mat U, vec s, mat V, sp_mat X, k, tol) svds(cx_mat U, vec s, cx_mat V, sp_cx_mat X, k) svds(cx_mat U, vec s, cx_mat V, sp_cx_mat X, k, tol)
k
specifies the number of singular values and singular vectors.
The singular values are in descending order.
The argument tol
is optional; it specifies the tolerance for convergence, and
it is passed as tol / sqrt(2)
to eigs_sym
.
If the decomposition fails:
s = svds(X, k)
resets s
and throws an error.svds(s, X, k)
resets s
and returns a bool set to false (an error is not
thrown).svds(U, s, V, X, k)
resets U
, s
, and V
and returns a bool set to
false (an error is not thrown).Caveats:
svds
is intended only for finding a few singular values from a large sparse
matrix; to find all singular values, use svd
instead.svds
may find fewer singular values than
specified.-fopenmp
in GCC and clang).[[cpp11::register]] list svds1_(const doubles_matrix<>& x, const int& k) { sp_mat X = as_SpMat(x); // convert all values below 0.1 to zero X.transform([](double val) { return (std::abs(val) < 0.1) ? 0 : val; }); mat U; vec s; mat V; bool ok = svds(U, s, V, X, k); writable::list out(4); out[0] = writable::logicals({ok}); out[1] = as_doubles(s); out[2] = as_doubles_matrix(U); out[3] = as_doubles_matrix(V); return out; }
Solve a sparse system of linear equations, $A \cdot X = B$, where $A$ is a sparse matrix, $B$ is a dense matrix or vector, and $X$ is unknown.
The number of rows in $A$ and $B$ must be the same.
Usage:
// A = matrix, b = vector vec x = spsolve(A, b) vec x = spsolve(A, b, solver) vec x = spsolve(A, b, solver, opts) // A = matrix, B = matrix mat X = spsolve(A, B) spsolve(x, A, b) spsolve(x, A, b, solver) spsolve(x, A, b, solver, opts)
The solver
argument is optional; solver
is either "superlu"
(default) or
"lapack"
.
"superlu"
, ARMA_USE_SUPERLU
must be enabled in armadillo/config.hpp
."lapack"
, the sparse matrix $A$ is converted to a dense matrix before
using the LAPACK solver. This considerably increases memory usage.The opts
argument is optional and applicable to the SuperLU solver, and is an
instance of the superlu_opts
structure:
struct superlu_opts { bool allow_ugly; // default: false bool equilibrate; // default: false bool symmetric; // default: false double pivot_thresh; // default: 1.0 permutation_type permutation; // default: superlu_opts::COLAMD refine_type refine; // default: superlu_opts::REF_NONE };
allow_ugly
is either true
or false
; it indicates whether to keep
solutions of systems singular to working precision.equilibrate
is either true
or false
; it indicates whether to equilibrate
the system (scale the rows and columns of $A$ to have unit norm).symmetric
is either true
or false
; it indicates whether to use SuperLU
symmetric mode, which gives preference to diagonal pivots.pivot_thresh
is in the range [0.0, 1.0], used for determining whether a
diagonal entry is an acceptable pivot (details in SuperLU documentation).permutation
specifies the type of column permutation; it is one of:superlu_opts::NATURAL
: natural ordering.superlu_opts::MMD_ATA
: minimum degree ordering on structure of $A^T \cdot A$.superlu_opts::MMD_AT_PLUS_A
: minimum degree ordering on structure of $A^T + A$.superlu_opts::COLAMD
: approximate minimum degree column ordering.refine
specifies the type of iterative refinement; it is one of:superlu_opts::REF_NONE
: no refinement.superlu_opts::REF_SINGLE
: iterative refinement in single precision.superlu_opts::REF_DOUBLE
: iterative refinement in double precision.superlu_opts::REF_EXTRA
: iterative refinement in extra precision.If no solution is found:
x = spsolve(A, b)
resets x
and throws an error.spsolve(x, A, b)
resets x
and returns a bool set to false (an error is not
thrown).The SuperLU solver is mainly useful for very large and/or highly sparse matrices.
To reuse the SuperLU factorisation of $A$ for finding solutions where $B$ is
iteratively changed, see the spsolve_factoriser
class.
If there is sufficient memory to store a dense version of matrix $A$, the LAPACK solver can be faster.
[[cpp11::register]] doubles spsolve1_(const doubles_matrix<>& a, const doubles& b, const char* method) { sp_mat A = as_SpMat(a); vec B = as_Col(b); vec X = spsolve(A, B, method); return as_doubles(X); }
Class for factorisation of sparse matrix $A$ for solving systems of linear equations in the form $AX = B$.
Allows the SuperLU factorisation of $A$ to be reused for finding solutions in cases where $B$ is iteratively changed.
For an instance of spsolve_factoriser
named as SF
, the member functions are:
SF.factorise(A. opts)
: factorise square-sized sparse matrix $A. Optional
settings are given in the
optsargument as per the
spsolve()` function. If
the factorisation fails, a bool set to false is returned.SF.solve(X, B)
: using the given dense matrix $B$ and the computed
factorisation, store in $X$ the solution to $AX = B`. If computing the
solution fails, $X$ is reset and a bool set to false is returned.SF.rcond()
: return the 1-norm estimate of the reciprocal condition number
computed during the factorisation. Values close to 1 suggest that the
factorised matrix is well-conditioned. Values close to 0 suggest that the
factorised matrix is badly conditioned.SF.reset()
: reset the instance and release all memory related to the stored
factorisation; this is automatically done when the instance goes out of scope.Caveats:
spsolve()
instead.ARMA_USE_SUPERLU
must be
enabled in config.hpp
.[[cpp11::register]] list spsolve_factoriser1_(const doubles_matrix<>& a, const list& b) { sp_mat A = as_SpMat(a); bool status = SF.factorise(A); if (status == false) { stop("factorisation failed"); } double rcond_value = SF.rcond(); vec B1 = as_Col(b[0]); vec B2 = as_Col(b[1]); vec X1, X2; bool ok1 = SF.solve(X1, B1); bool ok2 = SF.solve(X2, B2); if (ok1 == false) { stop("couldn't find X1"); } if (ok2 == false) { stop("couldn't find X2"); } writable::list out(3); out[0] = writable::logicals({status && ok1 && ok2}); out[1] = as_doubles(X1); out[2] = as_doubles(X2); return out; }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.