Nothing
crops.impl <- function(f,beta_star,n=20)
{
res <- set()
while(!set_is_empty(beta_star) & n > 0)
{
n <- n - 1
beta <- as.list(beta_star)[[length(beta_star)]]
beta_0 <- beta[[1]]
beta_1 <- beta[[2]]
Qm_0 <- f(beta_0)[[1]]
Qm_1 <- f(beta_1)[[1]]
m_0 <- length(f(beta_0)[[2]])
m_1 <- length(f(beta_1)[[2]])
if(m_0 > m_1 + 1)
{
beta_int <- (Qm_1 - Qm_0)/(m_0-m_1)
Qm_int <- f(beta_int)[[1]]
m_int <- length(f(beta_int)[[2]])
if(m_int != m_1)
{
beta_star <- set_union(beta_star,set(tuple(beta_int,beta_1)),set(tuple(beta_0,beta_int)))
}
}
beta_star <- set_symdiff(beta_star,set(beta))
res <- set_union(res,beta)
}
return(res)
}
#' Generic implementation of the crops algorithm (ref goes here).
#'
#' @name crops
#'
#' @description Provides a generic implementation of the crops (changepoints for a range of penalties) algorithm of Haynes et al. (2014) which efficiently searches a range of penalty values in multiple changepoint problems.
#' The crops algorithm finds the optimal segmentations for a different number of segments without incurring as large a computational cost as solving the constrained optimisation problem
#' for a range of values for the number of changepoints. To make the method generic, the user must provide a function that maps a penalty value to the results obtained by a penalised cost
#' changepoint method, and formats these results in a specific way. This interface to the generic method is similar to that as used by the \pkg{optimx} package.
#'
#' @param method A function mapping a penalty value to the results obtained by a penalised cost changepoint method. The function must return a list containing the cost and
#' a vector of changepoint locations corresponding to the optimal segmentation as determined by a penalised cost changepoint method.
#'
#' @param beta_min A positive numeric value indicating the smallest penalty value to consider.
#' @param beta_max A positive numeric value indicating the maximum penalty value to consider.
#' @param max_iterations Positive non zero integer. Limits the maximum number of iterations of the crops algorithm to \code{max_iterations}. Default value is \code{max_iterations=20}
#' @param ... Additional parameters to pass to the underlying changepoint method if required.
#'
#' @return An instance of an S4 class of type \code{crops.class}.
#'
#' @references \insertRef{crops-article}{crops}
#' @references \insertRef{optimx-1}{crops}
#' @references \insertRef{optimx-2}{crops}
#' @references \insertRef{optimx-package}{crops}
#' @references \insertRef{fpop-article}{crops}
#' @references \insertRef{fpop-package}{crops}
#'
#' @examples
#' # generate some simple data
#' set.seed(1)
#' N <- 100
#' data.vec <- c(rnorm(N), rnorm(N, 2), rnorm(N))
#'
#' # example one - calling fpop via crops using global scope
#' # need the fpop library
#' library(pacman)
#' p_load(fpop)
#' # create a function to wrap a call to fpop for use with crops
#' fpop.for.crops<-function(beta)
#' {
#' # Note - this code is taken from the example in the fpop package
#' fit <- Fpop(data.vec, beta)
#' end.vec <- fit$t.est
#' change.vec <- end.vec[-length(end.vec)]
#' start.vec <- c(1, change.vec+1)
#' segs.list <- list()
#' for(seg.i in seq_along(start.vec))
#' {
#' start <- start.vec[seg.i]
#' end <- end.vec[seg.i]
#' seg.data <- data.vec[start:end]
#' seg.mean <- mean(seg.data)
#' segs.list[[seg.i]] <- data.frame(
#' start, end,
#' mean=seg.mean,
#' seg.cost=sum((seg.data-seg.mean)^2))
#' }
#' segs <- do.call(rbind, segs.list)
#' return(list(sum(segs$seg.cost),segs$end[-length(segs$end)]))
#' }
#'
#' # now use this wrapper function with crops
#' res<-crops(fpop.for.crops,0.5*log(300),2.5*log(300))
#' # print summary of analysis
#' summary(res)
#' # summarise the segmentations
#' segmentations(res)
#' # visualise the segmentations
#' plot(res)
#' # overlay the data on the segmentations
#' df <- data.frame("x"=1:300,"y"=data.vec)
#' plot(res,df)
#'
crops <-
function(method,beta_min,beta_max,max_iterations=20,...)
{
# appease package checks
. <- NULL
check_crops_arguments(method,beta_min,beta_max,max_iterations)
CPT <- (. %>% method(...) %T>% check_method_return_values %>% as.tuple) %>% memoise
res <- crops.impl(CPT,set(tuple(beta_min,beta_max)),max_iterations)
# res <- crops.impl.2(CPT,set(tuple(beta_min,beta_max)),max_iterations)
object <- crops.class(CPT,res %>% unlist %>% as.set)
return(object)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.