Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
message = TRUE,
warning = FALSE
)
options(knitr.kable.NA = ".")
## ----setup, message = FALSE, echo = FALSE-------------------------------------
library("crossnma")
set.seed(1910)
settings.meta(digits = 3)
cilayout("(", " to ")
## -----------------------------------------------------------------------------
dim(ipddata)
head(ipddata)
## -----------------------------------------------------------------------------
stddata
## -----------------------------------------------------------------------------
# JAGS model: code + data
mod1 <- crossnma.model(treat, id, relapse, n, design,
prt.data = ipddata, std.data = stddata,
#---------- bias adjustment ----------
method.bias = "naive",
#---------- assign a prior ----------
prior.tau.trt = "dunif(0, 3)",
#---------- SUCRA ----------
sucra = TRUE, small.values = "desirable"
)
## ----fig.width=4.5, fig.height=5,fig.show='hold',fig.align='center'-----------
netgraph(mod1, cex.points = n.trts, adj = 0.5, plastic = FALSE,
number = TRUE, pos.number.of.studies = c(0.5, 0.4, 0.5, 0.5, 0.6, 0.5))
## -----------------------------------------------------------------------------
# Run JAGS
jagsfit1 <- crossnma(mod1, n.iter = 5000, n.burnin = 2000, thin = 1)
jagsfit1
## ----echo = FALSE-------------------------------------------------------------
knitr::kable(summary(jagsfit1, backtransf = FALSE), digits = 3)
## -----------------------------------------------------------------------------
par(mar = rep(2, 4), mfrow = c(2, 3))
plot(jagsfit1)
## -----------------------------------------------------------------------------
# JAGS model: code + data
mod2 <- crossnma.model(treat, id, relapse, n, design,
prt.data = ipddata, std.data = stddata,
#---------- bias adjustment ----------
method.bias = "naive",
#---------- meta-regression ----------
cov1 = age,
split.regcoef = FALSE
)
## -----------------------------------------------------------------------------
# Run JAGS
jagsfit2 <- crossnma(mod2, n.iter = 5000, n.burnin = 2000, thin = 1)
## ----echo = FALSE-------------------------------------------------------------
knitr::kable(summary(jagsfit2, backtransf = FALSE), digits = 3)
## ----fig.width=6, fig.height=5,fig.show='hold',fig.align='center'-------------
league(jagsfit2, cov1.value = 38, digits = 2)
## ----fig.width=6, fig.height=5,fig.show='hold',fig.align='center'-------------
league(jagsfit2, cov1.value = 38, digits = 2, direction = "long")
## -----------------------------------------------------------------------------
# JAGS model: code + data
mod3 <- crossnma.model(treat, id, relapse, n, design,
prt.data = ipddata, std.data = stddata,
reference = "D",
#---------- meta-regression ----------
cov1 = age,
split.regcoef = FALSE,
#---------- bias adjustment ----------
method.bias = "prior",
run.nrs.trt.effect= "common",
run.nrs.var.infl = 0.6, run.nrs.mean.shift = 0,
run.nrs.n.iter = 10000, run.nrs.n.burnin = 4000,
run.nrs.thin = 1, run.nrs.n.chains = 2
)
## -----------------------------------------------------------------------------
# Run JAGS
jagsfit3 <- crossnma(mod3, n.iter = 5000, n.burnin = 2000, thin = 1)
## ----fig.width=6, fig.height=5,fig.show='hold',fig.align='center'-------------
heatplot(jagsfit3, cov1.value = 38,
size = 6, size.trt = 20, size.axis = 12)
## -----------------------------------------------------------------------------
# JAGS model: code + data
mod4 <- crossnma.model(treat, id, relapse, n, design,
prt.data = ipddata, std.data = stddata,
#---------- bias adjustment ----------
method.bias = "adjust1",
bias.type = "add",
bias.effect = "common",
bias = rob,
unfav = unfavored,
bias.group = bias.group,
bias.covariate = year
)
## -----------------------------------------------------------------------------
# Run JAGS
jagsfit4 <- crossnma(mod4, n.iter = 5000, n.burnin = 2000, thin = 1)
## ----echo = FALSE-------------------------------------------------------------
knitr::kable(summary(jagsfit4, backtransf = FALSE), digits = 3)
## -----------------------------------------------------------------------------
# JAGS model: code + data
mod5 <- crossnma.model(treat, id, relapse, n, design,
prt.data = ipddata, std.data = stddata,
#---------- bias adjustment ----------
method.bias = "adjust2",
bias.type = "add",
bias = rob,
unfav = unfavored,
bias.group = bias.group
)
## -----------------------------------------------------------------------------
# Run JAGS
jagsfit5 <- crossnma(mod5, n.iter = 5000, n.burnin = 2000, thin = 1)
## ----echo = FALSE-------------------------------------------------------------
knitr::kable(summary(jagsfit5, backtransf = FALSE), digits = 3)
## ----echo = FALSE, message = FALSE--------------------------------------------
tools::compactPDF(path = ".", gs_quality = "ebook")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.