mdFnn | R Documentation |
Computes the percentage of false nearest neighbors for multidimensional time series as a function of embedding dimension.
mdFnn(data, tau, maxEmb, numSamples, Rtol, Atol)
data |
The matrix of data to estimate FNN. |
tau |
Time delay for embedding. |
maxEmb |
Maximum number of embedding dimensions considered |
numSamples |
Number of randomly drawn coordinates from phase-space used to estimate FNN |
Rtol |
First distance criterion for separating false neighbors |
Atol |
Second distance criterion for separating false neighbors |
It returns the percentage of false neighbors for each embedding.
Sebastian Wallot, Max Planck Insitute for Empirical Aesthetics Dan Moenster, Aarhus University, Moreno I. Coco, University of East London
Kennel, M. B., Brown, R., & Abarbanel, H. D. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical review A, 45, 3403. Wallot, S., and Moenster, D. (2018). Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time-series in Matlab. Front. Psychol. - Quantitative Psychology and Measurement
mdDelay
, optimizeParam
tau = 1; maxEmb = 10; numSamples = 500; Rtol = 10; Atol = 2
data(crqa) ## load the data
handset = handmovement[1:300, ] ## take less points
mdFnn(handset, tau, maxEmb, numSamples, Rtol, Atol)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.