| wage1 | R Documentation |
Cross-section wage data consisting of a random sample taken from the U.S. Current Population Survey for the year 1976. There are 526 observations in total.
data("wage1")
A data frame with 24 columns, and 526 rows.
column 1, of type numeric, average hourly earnings
column 2, of type numeric, years of education
column 3, of type numeric, years potential experience
column 4, of type numeric, years with current employer
column 5, of type factor, =“Nonwhite” if nonwhite, “White” otherwise
column 6, of type factor, =“Female” if female, “Male” otherwise
column 7, of type factor, =“Married” if Married, “Nonmarried” otherwise
column 8, of type numeric, number of dependents
column 9, of type numeric, =1 if live in SMSA
column 10, of type numeric, =1 if live in north central U.S
column 11, of type numeric, =1 if live in southern region
column 12, of type numeric, =1 if live in western region
column 13, of type numeric, =1 if work in construc. indus.
column 14, of type numeric, =1 if in nondur. manuf. indus.
column 15, of type numeric, =1 if in trans, commun, pub ut
column 16, of type numeric, =1 if in wholesale or retail
column 17, of type numeric, =1 if in services indus.
column 18, of type numeric, =1 if in prof. serv. indus.
column 19, of type numeric, =1 if in profess. occupation
column 20, of type numeric, =1 if in clerical occupation
column 21, of type numeric, =1 if in service occupation
column 22, of type numeric, log(wage)
column 23, of type numeric, exper^2
column 24, of type numeric, tenure^2
Jeffrey M. Wooldridge
Wooldridge, J.M. (2000), Introductory Econometrics: A Modern Approach, South-Western College Publishing.
## Not run:
data(wage1)
## Cross-validated model selection for spline degree and bandwidths Note
## - we override the default nmulti here to get a quick illustration
## (we don't advise doing this, in fact advise using more restarts in
## serious applications)
model <- crs(lwage~married+
female+
nonwhite+
educ+
exper+
tenure,
basis="additive",
complexity="degree",
data=wage1,
segments=c(1,1,1),
nmulti=1)
summary(model)
## Residual plots
plot(model)
## Partial mean plots (control for non axis predictors)
plot(model,mean=TRUE)
## Partial first derivative plots (control for non axis predictors)
plot(model,deriv=1)
## Partial second derivative plots (control for non axis predictors)
plot(model,deriv=2)
## Compare with local linear kernel regression
require(np)
model <- npreg(lwage~married+
female+
nonwhite+
educ+
exper+
tenure,
regtype="ll",
bwmethod="cv.aic",
data=wage1)
summary(model)
## Partial mean plots (control for non axis predictors)
plot(model,common.scale=FALSE)
## Partial first derivative plots (control for non axis predictors)
plot(model,gradients=TRUE,common.scale=FALSE)
detach("package:np")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.