Nothing
#' Computes the relative frequency of motifs in a categorical time series
#'
#' \code{calculate_motifs} computes the motifs of a categorical time series
#'
#' @param series An object of type \code{tsibble} (see R package \code{tsibble}), whose column named Value
#' contains the values of the corresponding CTS. This column must be of class \code{factor} and its levels
#' must be determined by the range of the CTS.
#' @param motif_length The length of the motif.
#' @return Returns an array with the relative frequency of motifs in a
#' categorical time series.
#' @examples
#' sequence_1 <- GeneticSequences[which(GeneticSequences$Series==1),]
#' calculate_motifs(sequence_1, motif_length = 3)
#' # Computing the relative frequencies of motifs of length 3 for the first
#' # series in dataset GeneticSequences
#' @details
#' Given a CTS of length \eqn{T} with range \eqn{\mathcal{V}=\{1, 2, \ldots, r\}},
#' \eqn{\overline{X}_t=\{\overline{X}_1,\ldots, \overline{X}_T\}}, and a motif length \eqn{L},
#' the function returns an array of \eqn{r^L} elements, with the element
#' in the position \eqn{(i_1, i_2, \ldots, i_r)} being the relative frequency
#' of the motif ``\eqn{i_1i_2 \cdots i_r}'' in the corresponding time series.
#' @encoding UTF-8
#' @author
#' Ángel López-Oriona, José A. Vilar
#' @references{
#'
#' \insertRef{lonardi2002finding}{ctsfeatures}
#'
#' }
#' @export
calculate_motifs <- function(series, motif_length){
check_cts(series)
series_length <- length(series$Value) # Series length
categories <- levels(series$Value)
n_cat <- length(categories) # Number of categories in the dataset
binarized_series <- binarization(series)
if (motif_length == 2) {
n_motifs <- series_length - motif_length + 1
array_motifs <- array(0, dim = rep(n_cat, motif_length))
for (i in 1 : n_cat) {
for (j in 1 : n_cat) {
vector_1 <- auxiliary_motifs(binarized_series[,i], 0, 1)
vector_2 <- auxiliary_motifs(binarized_series[,j], 1, 0)
array_motifs[i, j] <- sum(vector_1 * vector_2)
}
}
return(array_motifs/(n_motifs))
}
if (motif_length == 3) {
n_motifs <- series_length - motif_length + 1
array_motifs <- array(0, dim = rep(n_cat, motif_length))
for (i in 1 : n_cat) {
for (j in 1 : n_cat) {
for (k in 1 : n_cat) {
vector_1 <- auxiliary_motifs(binarized_series[,i], 0, 2)
vector_2 <- auxiliary_motifs(binarized_series[,j], 1, 1)
vector_3 <- auxiliary_motifs(binarized_series[,k], 2, 0)
array_motifs[i, j, k] <- sum(vector_1 * vector_2 * vector_3)
}
}
}
return(array_motifs/n_motifs)
}
if (motif_length == 4) {
n_motifs <- series_length - motif_length + 1
array_motifs <- array(0, dim = rep(n_cat, motif_length))
for (i in 1 : n_cat) {
for (j in 1 : n_cat) {
for (k in 1 : n_cat) {
for (l in 1 : n_cat) {
vector_1 <- auxiliary_motifs(binarized_series[,i], 0, 3)
vector_2 <- auxiliary_motifs(binarized_series[,j], 1, 2)
vector_3 <- auxiliary_motifs(binarized_series[,k], 2, 1)
vector_4 <- auxiliary_motifs(binarized_series[,l], 3, 0)
array_motifs[i, j, k, l] <- sum(vector_1 * vector_2 * vector_3 * vector_4)
}
}
}
}
return(array_motifs/n_motifs)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.