Nothing
# Estimate function that calls the underlying Rcpp estimate ekf function
# rcpp_ekf_estimate = function(self, private){
#
# message("Estimating using the ekf Rcpp script")
#
# # observation/input matrix
# obsMat = as.matrix(private$data[private$obs.names])
# inputMat = as.matrix(private$data[private$input.names])
#
# # non-na observation matrix
# numeric_is_not_na_obsMat = t(apply(obsMat, 1, FUN=function(x) as.numeric(!is.na(x))))
# if(nrow(numeric_is_not_na_obsMat)==1) numeric_is_not_na_obsMat = t(numeric_is_not_na_obsMat)
#
# # number of non-na observations
# number_of_available_obs = apply(numeric_is_not_na_obsMat, 1, sum)
#
# ################################################
# # Parameters
# ################################################
#
# parameters = sapply(private$parameters, function(x) x[["initial"]]) # Initial parameter values
#
#
# ################################################
# # Create negative log-likelihood function
# ################################################
# nll <- list()
# nll$par = parameters
# nll$fn <- function(parVec){
# ekf_rcpp_likelihood(private$Rcppfunction_f,
# private$Rcppfunction_g,
# private$Rcppfunction_dfdx,
# private$Rcppfunction_h,
# private$Rcppfunction_dhdx,
# private$Rcppfunction_hvar,
# obsMat,
# inputMat,
# # below is the parameter function argument
# parVec,
# # above is the parameter function argument
# private$initial.state$p0,
# private$initial.state$x0,
# private$ode.timestep.size,
# private$ode.timesteps,
# numeric_is_not_na_obsMat,
# number_of_available_obs,
# private$number.of.states,
# private$number.of.observations,
# private$ode.solver)$nll
# }
# private$nll <- nll
#
# ################################################
# # Optimization
# ################################################
#
# # Parameter Bounds
# lower.parameter.bound = unlist(lapply(private$free.pars, function(par) par$lower))
# upper.parameter.bound = unlist(lapply(private$free.pars, function(par) par$upper))
# if(private$unconstrained.optim){
# lower.parameter.bound = -Inf
# upper.parameter.bound = Inf
# }
#
# stats::nlminb(start=nll$par,
# objective=nll$fn,
# lower=lower.parameter.bound,
# upper=upper.parameter.bound,
# control=list(trace=1)
# )
#
# return(invisible(NULL))
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.