Description Usage Arguments Value Examples
Generate a random projection matrix for dimensionality reduction, and optionally transform input data to a projection in a lower dimension space using the generated random matrix.
1 2 3 4 5 6 7 8 9 |
x |
The input matrix or dataframe. Each data point should be a row and should consist of numeric values only. |
n_components |
Dimensionality of the target projection space. If NULL,
then the parameter is deducted using the Johnson-Lindenstrauss lemma,
taking into consideration the number of samples and the |
eps |
Error tolerance during projection. Default: 0.1. |
gaussian_method |
If TRUE, then use the Gaussian random projection method. Otherwise, use the sparse random projection method. See https://en.wikipedia.org/wiki/Random_projection for details. Default: TRUE. |
density |
Ratio of non-zero component in the random projection matrix. If NULL, then the value is set to the minimum density as recommended by Ping Li et al.: 1 / sqrt(n_features). Default: NULL. |
transform_input |
Whether to project input data onto a lower dimension space using the random matrix. Default: TRUE. |
seed |
Seed for the pseudorandom number generator. Default: 0L. |
A context object containing GPU pointer to a random matrix that can
be used as input to the cuml_transform()
function.
If transform_input
is set to TRUE, then the context object will also
contain a "transformed_data" attribute containing the lower dimensional
projection of the input data.
1 2 3 4 5 6 7 8 9 10 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.