Nothing
## ----include=FALSE------------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width=5, fig.height=3
)
library(knitr)
## -----------------------------------------------------------------------------
library(predtools)
data(gusto)
set.seed(1)
## -----------------------------------------------------------------------------
gusto$y <- gusto$day30
gusto$kill <- (as.numeric(gusto$Killip)>1)*1
## -----------------------------------------------------------------------------
dev_data <- gusto[!gusto$regl %in% c(1, 7, 9, 10, 11, 12, 14, 15),] #The regl variable contains location codes
val_data <- gusto[gusto$regl %in% c(1, 7, 9, 10, 11, 12, 14, 15),]
model <- glm(y ~ age + miloc + pmi + kill + pmin(sysbp,100) + pulse, data=dev_data, family=binomial(link="logit"))
## ----echo=FALSE---------------------------------------------------------------
kable(cbind("Coefficients"=summary(model)$coefficients[,1]))
## -----------------------------------------------------------------------------
val_data$pi <- predict(model, type="response", newdata=val_data)
## ----fig.width = 4, fig.height = 4--------------------------------------------
predtools::calibration_plot(val_data, obs="y", pred="pi")
## -----------------------------------------------------------------------------
library(cumulcalib)
res <- cumulcalib(val_data$y, val_data$pi)
## -----------------------------------------------------------------------------
summary(res)
## -----------------------------------------------------------------------------
plot(res)
## -----------------------------------------------------------------------------
val_data$pi2 <- val_data$pi*0.75/(1-val_data$pi*(1-0.75)) #One-shot transformation of risk to odds and back
res <- cumulcalib(val_data$y, val_data$pi2)
predtools::calibration_plot(val_data, obs="y", pred="pi2")
plot(res)
## -----------------------------------------------------------------------------
val_data$pi2 <- val_data$pi*1.25/(1-val_data$pi*(1-1.25)) #One-shot transformation of risk to odds and back
res <- cumulcalib(val_data$y, val_data$pi2)
predtools::calibration_plot(val_data, obs="y", pred="pi2")
plot(res)
## -----------------------------------------------------------------------------
dev_data2 <- dev_data[sample(nrow(dev_data), 500, replace=F),]
model2 <- glm(y ~ age + miloc + pmi + kill + pmin(sysbp,100) + pulse, data=dev_data2, family=binomial(link="logit"))
val_data$pi2 <- predict(model2, type="response", newdata=val_data)
## -----------------------------------------------------------------------------
predtools::calibration_plot(val_data, obs="y", pred="pi2")
## -----------------------------------------------------------------------------
res2 <- cumulcalib(val_data$y, val_data$pi2)
summary(res2)
plot(res2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.