Nothing
#' @title TTC_multneh function
#'
#' @description calculates the probability Pi(t) of being cured at a given time
#' t after diagnosis knowing that he/she was alive up to time t from a
#' Time-to-Null excess hazard model using numerical method, uniroot. In other
#' words,
#' Pi(t)=(probability of being cured and alive up to time t given xi)/
#' (probability of being alive up to time t given xi)
#'
#' @param object ouput from a non mixture model with distribution "tneh"
#' from curesurv function, with link_tau="loglinear"
#'
#' @param z_alpha Covariates matrix acting on parameter alpha of the density of
#' time-to-null excess hazard model
#'
#' @param z_tau Covariates matrix acting on time-to-null parameter.
#'
#' @param xmax time max at which Pi(t) is calculated.
#'
#' @param epsilon value fixed by user to estimate the TTC \eqn{\text{Pi}(t)\geq (1-\epsilon)}.
#' By default \eqn{\epsilon = 0.05}.
#'
#' @author Juste Goungounga, Judith Breaud, Olayide Boussari, Laura Botta, Valerie Jooste
#'
#' @references Boussari O, Bordes L, Romain G, Colonna M, Bossard N, Remontet L,
#' Jooste V. Modeling excess hazard with time-to-cure as a parameter.
#' Biometrics. 2021 Dec;77(4):1289-1302. doi: 10.1111/biom.13361.
#' Epub 2020 Sep 12. PMID: 32869288.
#' (\href{https://pubmed.ncbi.nlm.nih.gov/32869288/}{pubmed})
#'
#'
#' Boussari O, Romain G, Remontet L, Bossard N, Mounier M, Bouvier AM,
#' Binquet C, Colonna M, Jooste V. A new approach to estimate time-to-cure from
#' cancer registries data. Cancer Epidemiol. 2018 Apr;53:72-80.
#' doi: 10.1016/j.canep.2018.01.013. Epub 2018 Feb 4. PMID: 29414635.
#' (\href{https://pubmed.ncbi.nlm.nih.gov/29414635/}{pubmed})
#'
#' @keywords internal
TTC_multneh <- function(z_alpha, z_tau, xmax, object, epsilon = epsilon) {
if (!inherits(object, "curesurv"))
stop("Primary argument much be a curesurv object")
pt_cure_tneh <- function(z_alpha, z_tau, x, object, epsilon = epsilon) {
theta <- object$coefficients
n_z_tau <- ncol(z_tau)
n_z_alpha <- ncol(z_alpha)
n_z_tau_ad <- n_z_tau - 1
n_z_alpha_ad <- n_z_alpha - 1
alpha0 <- (theta[1])
if (n_z_tau > 0 & n_z_alpha > 0) {
alpha_k <- theta[2:(n_z_alpha + 1)]
beta <- exp(theta[n_z_alpha + 2])+1
tau0 <- theta[n_z_alpha + 2 + 1]
tau_z <- theta[(n_z_alpha + 2 + 1 + 1):(n_z_alpha + 2 + n_z_tau + 1)]
alpha <- exp(alpha0 + z_alpha %*% alpha_k)
tau <- exp(tau0 + z_tau %*% tau_z)
u <- x / (tau)
beta2 <- beta
cumhaz <- ifelse((x <= (tau)),
(tau) * beta(alpha, beta2) * stats::pbeta(u, alpha, beta2),
(tau) * beta(alpha, beta2) * stats::pbeta(1, alpha, beta2)
)
cumhaz2 <- (tau) * beta(alpha, beta2) * stats::pbeta(1, alpha, beta2)
} else if (n_z_tau == 0 & n_z_alpha > 0) {
alpha_k <- theta[2:(n_z_alpha + 1)]
beta <- exp(theta[n_z_alpha + 2])+1
tau0 <- theta[n_z_alpha + 2 + 1]
alpha <- exp(alpha0 + z_alpha %*% alpha_k)
tau <- exp(tau0 )
u <- x / (tau)
beta2 <- beta
cumhaz <- ifelse((x <= (tau)),
(tau) * beta(alpha, beta2) * stats::pbeta(u, alpha, beta2),
(tau) * beta(alpha, beta2) * stats::pbeta(1, alpha, beta2)
)
cumhaz2 <- (tau) * beta(alpha, beta2) * stats::pbeta(1, alpha, beta2)
}else if (n_z_tau > 0 & n_z_alpha == 0) {
beta <- exp(theta[2])+1
tau0 <- theta[n_z_alpha + 2 + 1]
tau_z <- theta[(n_z_alpha + 2 + 1 + 1):(n_z_alpha + 2 + n_z_tau + 1)]
alpha <- exp(alpha0)
tau <- exp(tau0 + z_tau %*% tau_z)
u <- x / (tau)
u <- u*(u < 1)
beta2 <- beta
cumhaz <- ifelse((x <= (tau)),
(tau) * beta(alpha, beta2) * stats::pbeta(u, alpha, beta2),
(tau) * beta(alpha, beta2) * stats::pbeta(1, alpha, beta2)
)
cumhaz2 <- (tau) * beta(alpha, beta2) * stats::pbeta(1, alpha, beta2)
}
else if (n_z_tau == 0 & n_z_alpha == 0) {
beta <- exp(theta[2])+1
tau0 <- theta[3]
alpha <- exp(alpha0)
tau <- exp(tau0)
u <- x / (tau)
u <- u*(u < 1)
beta2 <- beta
cumhaz <- ifelse((x <= (tau)),
(tau) * beta(alpha, beta2) * stats::pbeta(u, alpha, beta2),
(tau) * beta(alpha, beta2) * stats::pbeta(1, alpha, beta2)
)
cumhaz2 <- (tau) * beta(alpha, beta2) * stats::pbeta(1, alpha, beta2)
}
fx <- (exp(-cumhaz2) / exp(-cumhaz)) - (1 - epsilon)
return(fx)
}
res_ttc_tneh2 <- do.call("rbind",
ttc_tneh2(object = object,
fx = pt_cure_tneh,
xmax = xmax,
z_tau = z_tau,
z_alpha = z_alpha,
epsilon = epsilon))
res_all <- list(TTC = unlist(res_ttc_tneh2[, "root"]),
f.root = unlist(res_ttc_tneh2[, "f.root"]),
iter = unlist(res_ttc_tneh2[, "iter"]),
init.it = unlist(res_ttc_tneh2[, "init.it"]))
return(res_all)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.