Nothing
#' dpidtheta_adtneh2 function
#'
#' @description Partial derivatives of pi (net survival at tau) by theta
#'
#' #' @description Partial derivatives of cure fraction (or net survival at tau)
#' by theta from non-mixture model with distribution "tneh".
#'
#'
#' @param object ouput from model implemented in curesurv
#'
#' @param z_alpha Covariates matrix acting on parameter alpha of the density of
#' time-to-null excess hazard model
#'
#' @param z_tau Covariates matrix acting on time-to-null parameter.
#'
#' @param x time at which the estimates are predicted
#'
#' @param cumLexctopred pre prediction (obtained from cumLexc_ad2_topred), if NULL then it is calculated
#'
#' @keywords internal
dpidtheta_adtneh2 <- function(z_tau = z_tau,
z_alpha = z_alpha,
x = x,
object,
cumLexctopred=NULL) {
if(is.null(cumLexctopred)){
cumLexctopred<-cumLexc_ad2_topred(z_tau,z_alpha,x,object$coefficient)
}
cumLexc <- cumLexctopred$cumhaz
pi <- cumLexctopred$pi
theta <- object$coefficients
n_z_tau <- ncol(z_tau)
n_z_alpha <- ncol(z_alpha)
n_z_tau_ad <- n_z_tau - 1
n_z_alpha_ad <- n_z_alpha - 1
alpha0 <- theta[1]
if (n_z_tau == 0 & n_z_alpha == 0) {
alpha <- theta[1]
beta <- theta[2]
tau <- theta[3]
aux <- -beta(alpha, beta) * pi
D <- matrix(0, length(x), length(theta))
D[, 1] <- aux * tau * (digamma(alpha) - digamma(alpha + beta))
D[, 2] <- aux * tau * (digamma(beta) - digamma(alpha + beta))
D[, 3] <- aux
} else if (n_z_tau > 0 & n_z_alpha > 0) {
alpha_k <- theta[2:(n_z_alpha + 1)]
alpha <- alpha0 + z_alpha %*% alpha_k
beta <- theta[n_z_alpha + 2]
tau0 <- theta[n_z_alpha + 2 + 1]
tau_z <- theta[(n_z_alpha + 2 + 1 + 1):(n_z_alpha + 2 + n_z_tau + 1)]
tau <- tau0 + z_tau %*% tau_z
aux <- -beta(alpha, beta) * pi
D <- matrix(0, length(x),length(theta))
D[, 1] <- aux * tau * (digamma(alpha) - digamma(alpha + beta))
D[, 2:(n_z_alpha + 1)] <- D[, 1] * z_alpha
D[, (n_z_alpha + 2)] <- aux * tau * (digamma(beta) - digamma(alpha + beta))
D[, (n_z_alpha + 3)] <- aux
D[, (n_z_alpha + 4):(n_z_alpha + 3 + n_z_tau)] <- D[, (n_z_alpha + 3)] * z_tau
}
else if (n_z_tau > 0 & n_z_alpha == 0) {
beta <- theta[n_z_alpha + 2]
tau0 <- theta[n_z_alpha + 2 + 1]
tau_z <- theta[(n_z_alpha + 2 + 1 + 1):(n_z_alpha + 2 + n_z_tau + 1)]
alpha <- alpha0
tau <- tau0 + z_tau %*% tau_z
beta2 <- beta
D <- matrix(0, length(x), length(theta))
aux <- -beta(alpha, beta2) * pi
D[, 1] <- aux * tau * (digamma(alpha) - digamma(alpha + beta2))
D[, (n_z_alpha + 2)] <- aux * tau * (digamma(beta2) - digamma(alpha + beta2))
D[, (n_z_alpha + 3)] <- aux
D[, (n_z_alpha + 4):(n_z_alpha + 3 + n_z_tau)] <- D[, (n_z_alpha + 3)] * z_tau
}
else if (n_z_tau == 0 & n_z_alpha > 0) {
alpha_k <- theta[2:(n_z_alpha + 1)]
alpha <- alpha0 + z_alpha %*% alpha_k
beta <- theta[n_z_alpha + 2]
tau <- theta[n_z_alpha + 2 + 1]
D <- matrix(0, length(x), (n_z_alpha + 3 + n_z_tau))
aux <- -beta(alpha, beta) * pi
D[, 1] <- aux * tau * (digamma(alpha) - digamma(alpha + beta))
D[, 2:(n_z_alpha + 1)] <- D[, 1] * z_alpha
D[, (n_z_alpha + 2)] <- aux * tau * (digamma(beta) - digamma(alpha + beta))
D[, (n_z_alpha + 3)] <- aux
}
return(D)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.