Nothing
#' dpttcdtheta_adtneh2 function
#'
#' @description Partial derivatives of probability to be cure by theta which
#' can be evaluated at t = TTC, from predictions based on non-mixture model
#' with distribution "tneh".
#'
#' @param object ouput from a model implemented in curesurv
#'
#'
#' @param z_alpha Covariates matrix acting on parameter alpha of the density of
#' time-to-null excess hazard model
#'
#' @param z_tau Covariates matrix acting on time-to-null parameter.
#'
#' @param x time at which the predictions are provided
#'
#' @param cumLexctopred a pre-prediction parameter obtained with cumLexc_ad2_topred, if NULL will be calculated
#'
#' @param Dpi partial derivative of pi according to theta at time TTC, if NULL will be calculated
#'
#' @param Dsn partial derivative of net survival according to theta at time TTC, if NULL will be calculated
#'
#' @author Juste Goungounga, Judith Breaud, Olayide Boussari, Laura Botta, Valerie Jooste
#'
#' @references Boussari O, Bordes L, Romain G, Colonna M, Bossard N, Remontet L,
#' Jooste V. Modeling excess hazard with time-to-cure as a parameter.
#' Biometrics. 2021 Dec;77(4):1289-1302. doi: 10.1111/biom.13361.
#' Epub 2020 Sep 12. PMID: 32869288.
#' (\href{https://pubmed.ncbi.nlm.nih.gov/32869288/}{pubmed})
#'
#'
#' Boussari O, Romain G, Remontet L, Bossard N, Mounier M, Bouvier AM,
#' Binquet C, Colonna M, Jooste V. A new approach to estimate time-to-cure from
#' cancer registries data. Cancer Epidemiol. 2018 Apr;53:72-80.
#' doi: 10.1016/j.canep.2018.01.013. Epub 2018 Feb 4. PMID: 29414635.
#' (\href{https://pubmed.ncbi.nlm.nih.gov/29414635/}{pubmed})
#'
#' @keywords internal
dpttcdtheta_adtneh2 <- function(z_tau,
z_alpha,
x = x,
object,
cumLexctopred=NULL,
Dpi=NULL,
Dsn=NULL) {
if (!inherits(object, "curesurv"))
stop("Primary argument much be a curesurv object")
if(is.null(cumLexctopred)){
cumLexctopred=cumLexc_ad2_topred(z_tau = z_tau,z_alpha = z_alpha,x=x,theta=object$coefficient)
}
if(is.null(Dpi)){
Dpi <- dpidtheta_adtneh2(z_tau = z_tau,
z_alpha = z_alpha,
x = x,
object,
cumLexctopred=cumLexctopred)
}
if(is.null(Dsn)){
Dsn <- dsndtheta_adtneh2(z_tau = z_tau,
z_alpha = z_alpha,
x = x,
object,
cumLexctopred=cumLexctopred,
Dpi=Dpi)
}
theta <- object$coefficients
n_z_tau <- ncol(z_tau)
n_z_alpha <- ncol(z_alpha)
n_z_tau_ad <- n_z_tau - 1
n_z_alpha_ad <- n_z_alpha - 1
alpha0 <- theta[1]
res_pred <- cumLexctopred
pi <- res_pred$pi
cumhaz <- res_pred$cumhaz
netsurv <- res_pred$netsurv
D <- matrix(0, length(x), length(theta))
if (n_z_tau == 0 & n_z_alpha == 0) {
D[, 1] <- (1/netsurv^2) * (Dpi[,1] * netsurv - pi * Dsn[,1])
D[, 2] <- (1/netsurv^2) * (Dpi[,2] * netsurv - pi * Dsn[,2])
D[, 3] <- (1/netsurv^2) * (Dpi[,3] * netsurv - pi * Dsn[,3])
} else if (n_z_tau > 0 & n_z_alpha > 0) {
D[, 1] <- (1/netsurv^2) * (Dpi[,1] * netsurv - pi * Dsn[,1])
D[, 2:(n_z_alpha + 1)] <- (1/matrix(rep(netsurv,n_z_alpha),ncol=n_z_alpha)^2) * (Dpi[,2:(n_z_alpha + 1)] * matrix(rep(netsurv,n_z_alpha),ncol=n_z_alpha) - matrix(rep(pi,n_z_alpha),ncol=n_z_alpha) * Dsn[,2:(n_z_alpha + 1)])
D[, (n_z_alpha + 2)] <- (1/netsurv^2) * (Dpi[,(n_z_alpha + 2)] * netsurv - pi * Dsn[,(n_z_alpha + 2)])
D[, (n_z_alpha + 3)] <- (1/netsurv^2) * (Dpi[,(n_z_alpha + 3)] * netsurv - pi * Dsn[,(n_z_alpha + 3)])
D[, (n_z_alpha + 4):(n_z_alpha + 3 + n_z_tau)] <- (1/matrix(rep(netsurv,n_z_tau),ncol=n_z_tau)^2) * (Dpi[,(n_z_alpha + 4):(n_z_alpha + 3 + n_z_tau)] * matrix(rep(netsurv,n_z_tau),ncol=n_z_tau) - matrix(rep(pi,n_z_tau),ncol=n_z_tau) * Dsn[,(n_z_alpha + 4):(n_z_alpha + 3 + n_z_tau)])
} else if (n_z_tau > 0 & n_z_alpha == 0) {
D[, 1] <- (1/netsurv^2) * (Dpi[,1] * netsurv - pi * Dsn[,1])
D[, (n_z_alpha + 2)] <- (1/netsurv^2) * (Dpi[,(n_z_alpha + 2)] * netsurv - pi * Dsn[,(n_z_alpha + 2)])
D[, (n_z_alpha + 3)] <- (1/netsurv^2) * (Dpi[,(n_z_alpha + 3)] * netsurv - pi * Dsn[,(n_z_alpha + 3)])
D[, (n_z_alpha + 4):(n_z_alpha + 3 + n_z_tau)] <- (1/matrix(rep(netsurv,n_z_tau),ncol=n_z_tau)^2) * (Dpi[,(n_z_alpha + 4):(n_z_alpha + 3 + n_z_tau)] * matrix(rep(netsurv,n_z_tau),ncol=n_z_tau) - matrix(rep(pi,n_z_tau),ncol=n_z_tau) * Dsn[,(n_z_alpha + 4):(n_z_alpha + 3 + n_z_tau)])
} else if (n_z_tau == 0 & n_z_alpha > 0) {
D[, 1] <- (1/netsurv^2) * (Dpi[,1] * netsurv - pi * Dsn[,1])
pi_replicated <- matrix(rep(pi, n_z_alpha), nrow = length(pi), ncol = n_z_alpha)
D[, 2:(n_z_alpha + 1)] <- (1/netsurv^2) * (Dpi[,2:(n_z_alpha + 1)] * netsurv - pi_replicated * Dsn[,2:(n_z_alpha + 1)])
D[, (n_z_alpha + 2)] <- (1/netsurv^2) * (Dpi[,(n_z_alpha + 2)] * netsurv - pi * Dsn[,(n_z_alpha + 2)])
D[, (n_z_alpha + 3)] <- (1/netsurv^2) * (Dpi[,(n_z_alpha + 3)] * netsurv - pi * Dsn[,(n_z_alpha + 3)])
}
return(D)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.