cvCovEst | R Documentation |
cvCovEst()
identifies the optimal covariance matrix
estimator from among a set of candidate estimators.
cvCovEst(
dat,
estimators = c(linearShrinkEst, thresholdingEst, sampleCovEst),
estimator_params = list(linearShrinkEst = list(alpha = 0), thresholdingEst = list(gamma
= 0)),
cv_loss = cvMatrixFrobeniusLoss,
cv_scheme = "v_fold",
mc_split = 0.5,
v_folds = 10L,
parallel = FALSE,
...
)
dat |
A numeric |
estimators |
A |
estimator_params |
A named |
cv_loss |
A |
cv_scheme |
A |
mc_split |
A |
v_folds |
An |
parallel |
A |
... |
Not currently used. Permits backward compatibility. |
A list
of results containing the following elements:
estimate
- A matrix
corresponding to the estimate of
the optimal covariance matrix estimator.
estimator
- A character
indicating the optimal
estimator and corresponding hyperparameters, if any.
risk_df
- A tibble
providing the
cross-validated risk estimates of each estimator.
cv_df
- A tibble
providing each
estimators' loss over the folds of the cross-validated procedure.
args
- A named list
containing arguments passed to
cvCovEst
.
cvCovEst(
dat = mtcars,
estimators = c(
linearShrinkLWEst, thresholdingEst, sampleCovEst
),
estimator_params = list(
thresholdingEst = list(gamma = seq(0.1, 0.3, 0.1))
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.