View source: R/foldFunctions.R
cvMatrixFrobeniusLoss | R Documentation |
cvMatrixFrobeniusLoss()
evaluates the matrix Frobenius
loss over a fold
object (from 'origami'
\insertCiteCoyle2018cvCovEst). This loss function is equivalent to that
presented in cvFrobeniusLoss()
in terms of estimator
selections, but is more computationally efficient.
cvMatrixFrobeniusLoss(fold, dat, estimator_funs, estimator_params = NULL)
fold |
A |
dat |
A |
estimator_funs |
An |
estimator_params |
A named |
A tibble
providing information on estimators,
their hyperparameters (if any), and their matrix Frobenius loss evaluated
on a given fold
.
library(MASS)
library(origami)
library(rlang)
# generate 10x10 covariance matrix with unit variances and off-diagonal
# elements equal to 0.5
Sigma <- matrix(0.5, nrow = 10, ncol = 10) + diag(0.5, nrow = 10)
# sample 50 observations from multivariate normal with mean = 0, var = Sigma
dat <- mvrnorm(n = 50, mu = rep(0, 10), Sigma = Sigma)
# generate a single fold using MC-cv
resub <- make_folds(dat,
fold_fun = folds_vfold,
V = 2
)[[1]]
cvMatrixFrobeniusLoss(
fold = resub,
dat = dat,
estimator_funs = rlang::quo(c(
linearShrinkEst, thresholdingEst, sampleCovEst
)),
estimator_params = list(
linearShrinkEst = list(alpha = c(0, 1)),
thresholdingEst = list(gamma = c(0, 1))
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.