Nothing
# ----------------------
# Author: Andreas Alfons
# KU Leuven
# ----------------------
#' Prediction loss
#'
#' Compute the prediction loss of a model.
#'
#' \code{mspe} and \code{rmspe} compute the mean squared prediction error and
#' the root mean squared prediction error, respectively. In addition,
#' \code{mape} returns the mean absolute prediction error, which is somewhat
#' more robust.
#'
#' Robust prediction loss based on trimming is implemented in \code{tmspe} and
#' \code{rtmspe}. To be more precise, \code{tmspe} computes the trimmed mean
#' squared prediction error and \code{rtmspe} computes the root trimmed mean
#' squared prediction error. A proportion of the largest squared differences
#' of the observed and fitted values are thereby trimmed.
#'
#' Standard errors can be requested via the \code{includeSE} argument. Note that
#' standard errors for \code{tmspe} are based on a winsorized standard
#' deviation. Furthermore, standard errors for \code{rmspe} and \code{rtmspe}
#' are computed from the respective standard errors of \code{mspe} and
#' \code{tmspe} via the delta method.
#'
#' @rdname cost
#' @name cost
#'
#' @param y a numeric vector or matrix giving the observed values.
#' @param yHat a numeric vector or matrix of the same dimensions as \code{y}
#' giving the fitted values.
#' @param trim a numeric value giving the trimming proportion (the default is
#' 0.25).
#' @param includeSE a logical indicating whether standard errors should be computed
#' as well.
#'
#' @return If standard errors are not requested, a numeric value giving the
#' prediction loss is returned.
#'
#' Otherwise a list is returned, with the first component containing the
#' prediction loss and the second component the corresponding standard error.
#'
#' @author Andreas Alfons
#'
#' @references
#' Tukey, J.W. and McLaughlin, D.H. (1963) Less vulnerable confidence and
#' significance procedures for location based on a single sample:
#' Trimming/winsorization. \emph{Sankhya: The Indian Journal of Statistics,
#' Series A}, \bold{25}(3), 331--352
#'
#' Oehlert, G.W. (1992) A note on the delta method. \emph{The American
#' Statistician}, \bold{46}(1), 27--29.
#'
#' @seealso \code{\link{cvFit}}, \code{\link{cvTuning}}
#'
#' @examples
#' # fit an MM-regression model
#' data("coleman")
#' fit <- lmrob(Y~., data=coleman)
#'
#' # compute the prediction loss from the fitted values
#' # (hence the prediction loss is underestimated in this simple
#' # example since all observations are used to fit the model)
#' mspe(coleman$Y, predict(fit))
#' rmspe(coleman$Y, predict(fit))
#' mape(coleman$Y, predict(fit))
#' tmspe(coleman$Y, predict(fit), trim = 0.1)
#' rtmspe(coleman$Y, predict(fit), trim = 0.1)
#'
#' # include standard error
#' mspe(coleman$Y, predict(fit), includeSE = TRUE)
#' rmspe(coleman$Y, predict(fit), includeSE = TRUE)
#' mape(coleman$Y, predict(fit), includeSE = TRUE)
#' tmspe(coleman$Y, predict(fit), trim = 0.1, includeSE = TRUE)
#' rtmspe(coleman$Y, predict(fit), trim = 0.1, includeSE = TRUE)
#'
#' @keywords utilities
NULL
## mean squared prediction error
#' @rdname cost
#' @export
mspe <- function(y, yHat, includeSE = FALSE) {
residuals2 <- (y - yHat)^2 # squared residuals
if(!is.null(dim(y))) {
residuals2 <- rowSums(residuals2) # squared norm in multivariate case
}
res <- mean(residuals2)
if(isTRUE(includeSE)) {
res <- list(mspe=res, se=sd(residuals2)/sqrt(nobs(residuals2)))
}
res
}
## root mean squared prediction error
#' @rdname cost
#' @export
rmspe <- function(y, yHat, includeSE = FALSE) {
includeSE <- isTRUE(includeSE)
res <- mspe(y, yHat, includeSE=includeSE)
if(includeSE) {
rmspe <- sqrt(res$mspe)
res <- list(rmspe=rmspe, se=res$se/(2*rmspe))
} else res <- sqrt(res)
res
}
## mean absolute prediction error
#' @rdname cost
#' @export
mape <- function(y, yHat, includeSE = FALSE) {
absResiduals <- abs(y - yHat) # absolue residuals
if(!is.null(dim(y))) {
absResiduals <- rowSums(absResiduals) # norm in multivariate case
}
res <- mean(absResiduals)
if(isTRUE(includeSE)) {
res <- list(mape=res, se=sd(absResiduals)/sqrt(nobs(absResiduals)))
}
res
}
## trimmed mean squared prediction error
#' @rdname cost
#' @export
tmspe <- function(y, yHat, trim = 0.25, includeSE = FALSE) {
n <- nobs(y)
h <- n - floor(n*trim)
residuals2 <- (y - yHat)^2 # squared residuals
if(!is.null(dim(y))) {
residuals2 <- rowSums(residuals2) # squared norm in multivariate case
}
residuals2 <- sort(residuals2) # sort squared residuals
res <- mean(residuals2[seq_len(h)]) # mean over h smallest values
if(isTRUE(includeSE)) {
# standard error of the trimmed mean is based on a winsorized
# standard deviation
alpha <- 1 - trim
if(h < n) {
q <- quantile(residuals2, alpha) # quantile for winsorization
residuals2[(h+1):n] <- q # replace tail with quantile
}
res <- list(tmspe=res, se=sd(residuals2)/(alpha*sqrt(n)))
}
res
}
## root trimmed mean squared prediction error
#' @rdname cost
#' @export
rtmspe <- function(y, yHat, trim = 0.25, includeSE = FALSE) {
includeSE <- isTRUE(includeSE)
res <- tmspe(y, yHat, trim=trim, includeSE=includeSE)
if(includeSE) {
rtmspe <- sqrt(res$tmspe)
res <- list(rtmspe=rtmspe, se=res$se/(2*rtmspe))
} else res <- sqrt(res)
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.