Description Arguments References Examples
The R6 class BootCoefVar
produces the bootstrap
resampling for the coefficient of variation (cv) of the given numeric
vectors. It uses boot and boot.ci from the
package boot.
x |
An |
na.rm |
a logical value indicating whether |
alpha |
The allowed type I error probability |
R |
integer indicating the number of bootstrap replicates. |
Canty, A., & Ripley, B, 2017, boot: Bootstrap R (S-Plus) Functions. R package version 1.3-20.
Davison, AC., & Hinkley, DV., 1997, Bootstrap Methods and Their Applications. Cambridge University Press, Cambridge. ISBN 0-521-57391-2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | x <- c(
0.2, 0.5, 1.1, 1.4, 1.8, 2.3, 2.5, 2.7, 3.5, 4.4,
4.6, 5.4, 5.4, 5.7, 5.8, 5.9, 6.0, 6.6, 7.1, 7.9
)
cv_x <- BootCoefVar$new(x)
cv_x$boot_cv()
cv_x$boot_cv_corr()
cv_x$boot_basic_ci_cv()
cv_x$boot_norm_ci_cv()
cv_x$boot_perc_ci_cv()
cv_x$boot_bca_ci_cv()
cv_x$boot_basic_ci_cv_corr()
cv_x$boot_norm_ci_cv_corr()
cv_x$boot_perc_ci_cv_corr()
cv_x$boot_bca_ci_cv_corr()
R6::is.R6(cv_x)
|
Loading required package: dplyr
Attaching package: ‘dplyr’
The following objects are masked from ‘package:stats’:
filter, lag
The following objects are masked from ‘package:base’:
intersect, setdiff, setequal, union
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot::boot(data = self$x, statistic = function(x, i) {
100 * ((sd(self$x[i], na.rm = self$na.rm))/(mean(self$x[i],
na.rm = self$na.rm)))
}, R = self$R)
Bootstrap Statistics :
original bias std. error
t1* 57.77352 -0.9641535 9.807628
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot::boot(data = self$x, statistic = function(x, i) {
100 * (sd(self$x[i], na.rm = self$na.rm)/mean(self$x[i],
na.rm = self$na.rm) * ((1 - (1/(4 * (length(self$x[i]) -
1))) + (1/length(self$x)) * (sd(self$x[i], na.rm = self$na.rm)/mean(self$x[i],
na.rm = self$na.rm))^2) + (1/(2 * (length(self$x) - 1)^2))))
}, R = R)
Bootstrap Statistics :
original bias std. error
t1* 58.05753 -1.05836 10.28461
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot::boot.ci(boot.out = self$boot_cv(), conf = (1 - self$alpha),
type = "basic")
Intervals :
Level Basic
95% (37.77, 77.43 )
Calculations and Intervals on Original Scale
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot::boot.ci(boot.out = self$boot_cv(), conf = (1 - self$alpha),
type = "norm")
Intervals :
Level Normal
95% (39.35, 78.00 )
Calculations and Intervals on Original Scale
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot::boot.ci(boot.out = self$boot_cv(), conf = (1 - self$alpha),
type = "perc")
Intervals :
Level Percentile
95% (37.83, 77.12 )
Calculations and Intervals on Original Scale
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot::boot.ci(boot.out = self$boot_cv(), conf = (1 - self$alpha),
type = "bca")
Intervals :
Level BCa
95% (40.74, 81.41 )
Calculations and Intervals on Original Scale
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot::boot.ci(boot.out = self$boot_cv_corr(), conf = (1 - self$alpha),
type = "basic")
Intervals :
Level Basic
95% (37.56, 79.44 )
Calculations and Intervals on Original Scale
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot::boot.ci(boot.out = self$boot_cv_corr(), conf = (1 - self$alpha),
type = "norm")
Intervals :
Level Normal
95% (38.02, 78.96 )
Calculations and Intervals on Original Scale
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot::boot.ci(boot.out = self$boot_cv_corr(), conf = (1 - self$alpha),
type = "perc")
Intervals :
Level Percentile
95% (38.41, 78.99 )
Calculations and Intervals on Original Scale
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot::boot.ci(boot.out = self$boot_cv_corr(), conf = (1 - self$alpha),
type = "bca")
Intervals :
Level BCa
95% (40.15, 81.91 )
Calculations and Intervals on Original Scale
[1] TRUE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.