inst/doc/daiquiri.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

# show all columns when printing tibbles
options(tibble.width = Inf)

# restrict threads for CRAN compliance
dt_threads <- data.table::getDTthreads()
data.table::setDTthreads(1)

## -----------------------------------------------------------------------------
# first, attach the package if you haven't already
library(daiquiri)

# this is where the example file is located
path <- system.file("extdata", "example_prescriptions.csv", package = "daiquiri")

# load the data into a data.frame without doing any datatype conversion
example_prescriptions <- read_data(
  path,
  delim = ",",
  col_names = TRUE,
  show_progress = FALSE
)

head(example_prescriptions)

## -----------------------------------------------------------------------------
# set up a field_types specification for use later
fts <- field_types(
  PrescriptionID = ft_uniqueidentifier(),
  PrescriptionDate = ft_timepoint(),
  AdmissionDate = ft_datetime(includes_time = FALSE, na = "1800-01-01"),
  Drug = ft_freetext(),
  Dose = ft_numeric(),
  DoseUnit = ft_categorical(),
  PatientID = ft_ignore(),
  Location = ft_categorical(aggregate_by_each_category = TRUE)
)

## ----include=FALSE------------------------------------------------------------
# quietly test can create the report from an rmd but show the code in the next chunk in the vignette
daiq_obj <- daiquiri_report(
  df = example_prescriptions,
  field_types = fts,
  override_column_names = FALSE,
  na = c("", "NULL"),
  dataset_description = "Example prescription data",
  aggregation_timeunit = "day",
  report_title = "daiquiri data quality report",
  save_directory = tempdir(),
  save_filename = "example_prescriptions_report",
  show_progress = FALSE,
  log_directory = NULL
)
# clean up
file.remove(daiq_obj$report_filename)

## ----eval=FALSE---------------------------------------------------------------
# daiq_obj <- daiquiri_report(
#   df = example_prescriptions,
#   field_types = fts,
#   override_column_names = FALSE,
#   na = c("", "NULL"),
#   dataset_description = "Example prescription data",
#   aggregation_timeunit = "day",
#   report_title = "daiquiri data quality report",
#   save_directory = ".",
#   save_filename = "example_prescriptions_report",
#   show_progress = TRUE,
#   log_directory = NULL
# )

## -----------------------------------------------------------------------------
fts <- field_types(
  PrescriptionID = ft_uniqueidentifier(),
  PrescriptionDate = ft_timepoint(),
  AdmissionDate = ft_datetime(includes_time = FALSE, na = "1800-01-01"),
  Drug = ft_freetext(),
  Dose = ft_numeric(),
  DoseUnit = ft_categorical(),
  PatientID = ft_ignore(),
  Location = ft_strata()
)

## ----eval=FALSE---------------------------------------------------------------
# daiq_obj <- daiquiri_report(
#   df = example_prescriptions,
#   field_types = fts,
#   override_column_names = FALSE,
#   na = c("", "NULL"),
#   dataset_description = "Example prescription data",
#   aggregation_timeunit = "day",
#   report_title = "daiquiri data quality report - stratified",
#   save_directory = ".",
#   save_filename = "example_prescriptions_report_stratified",
#   show_progress = TRUE,
#   log_directory = NULL
# )

## ----eval=FALSE---------------------------------------------------------------
# # load your dataset into a source_data object
# prescriptions_source_data <- prepare_data(
#   example_prescriptions,
#   fieldtypes = fts,
#   na = c("", "NULL")
# )
# 
# # aggregate the source_data object by desired granularity
# prescriptions_byday <- aggregate_data(
#   prescriptions_source_data,
#   aggregation_timeunit = "day"
# )
# 
# # aggregate the same source_data object by a different granularity
# prescriptions_byweek <- aggregate_data(
#   prescriptions_source_data,
#   aggregation_timeunit = "week"
# )
# 
# # generate and save the reports
# report_data(
#   source_data = prescriptions_source_data,
#   aggregated_data = prescriptions_byday,
#   report_title = "Daily prescriptions",
#   save_directory = ".",
#   save_filename = "example_prescriptions_byday"
# )
# 
# report_data(
#   source_data = prescriptions_source_data,
#   aggregated_data = prescriptions_byweek,
#   report_title = "Weekly prescriptions",
#   save_directory = ".",
#   save_filename = "example_prescriptions_byweek"
# )

## ----include = FALSE----------------------------------------------------------
# restore thread setting
data.table::setDTthreads(dt_threads)

Try the daiquiri package in your browser

Any scripts or data that you put into this service are public.

daiquiri documentation built on June 25, 2025, 1:07 a.m.