darch: Package for Deep Architectures and Restricted Boltzmann Machines

Share:

The darch package is built on the basis of the code from G. E. Hinton and R. R. Salakhutdinov (available under Matlab Code for deep belief nets). This package is for generating neural networks with many layers (deep architectures) and train them with the method introduced by the publications "A fast learning algorithm for deep belief nets" (G. E. Hinton, S. Osindero, Y. W. Teh (2006) <DOI:10.1162/neco.2006.18.7.1527>) and "Reducing the dimensionality of data with neural networks" (G. E. Hinton, R. R. Salakhutdinov (2006) <DOI:10.1126/science.1127647>). This method includes a pre training with the contrastive divergence method published by G.E Hinton (2002) <DOI:10.1162/089976602760128018> and a fine tuning with common known training algorithms like backpropagation or conjugate gradients. Additionally, supervised fine-tuning can be enhanced with maxout and dropout, two recently developed techniques to improve fine-tuning for deep learning.

Author
Martin Drees [aut, cre, cph], Johannes Rueckert [ctb], Christoph M. Friedrich [ctb], Geoffrey Hinton [cph], Ruslan Salakhutdinov [cph], Carl Edward Rasmussen [cph],
Date of publication
2016-07-20 00:33:10
Maintainer
Martin Drees <mdrees@stud.fh-dortmund.de>
License
GPL (>= 2) | file LICENSE
Version
0.12.0
URLs

View on CRAN

Man pages

addLayer
Adds a layer to the 'DArch' object
addLayer-DArch-method
Adds a layer to the 'DArch' object
addLayerField
Adds a field to a layer
addLayerField-DArch-method
Adds a field to a layer
backpropagation
Backpropagation learning function
contr.ltfr
Wrapper for 'contr.ltfr'
createDataSet
Create data set using data, targets, a formula, and possibly...
createDataSet-ANY-ANY-missing-DataSet-method
Create new 'DataSet' by filling an existing one with new...
createDataSet-ANY-ANY-missing-missing-method
Create 'DataSet' using data and targets.
createDataSet-ANY-missing-formula-missing-method
Constructor function for 'DataSet' objects.
crossEntropyError
Cross entropy error function
darch
Fit a deep neural network
darchBench
Benchmarking wrapper for 'darch'
DArch-class
Class for deep architectures
darchModelInfo
Creates a custom caret model for 'darch'.
darchTest
Test classification network.
DataSet
Class for specifying datasets.
exponentialLinearUnit
Exponential linear unit (ELU) function with unit derivatives.
fineTuneDArch
Fine tuning function for the deep architecture
fineTuneDArch-DArch-method
Fine tuning function for the deep architecture
generateDropoutMask
Dropout mask generator function.
generateRBMs-DArch-method
Generates the RBMs for the pre-training.
generateWeightsGlorotNormal
Glorot normal weight initialization
generateWeightsGlorotUniform
Glorot uniform weight initialization
generateWeightsHeNormal
He normal weight initialization
generateWeightsHeUniform
He uniform weight initialization
generateWeightsNormal
Generates a weight matrix using rnorm.
generateWeightsUniform
Generates a weight matrix using runif
getDropoutMask
Returns the dropout mask for the given layer
getMomentum
Returns the current momentum of the 'Net'.
linearUnit
Linear unit function with unit derivatives.
linearUnitRbm
Calculates the linear neuron output no transfer function
loadDArch
Loads a DArch network
makeStartEndPoints
Makes start- and end-points for the batches.
maxoutUnit
Maxout / LWTA unit function
maxoutWeightUpdate
Updates the weight on maxout layers
minimize
Minimize a differentiable multivariate function.
minimizeAutoencoder
Conjugate gradient for a autoencoder network
minimizeClassifier
Conjugate gradient for a classification network
mseError
Mean squared error function
Net
Abstract class for neural networks.
newDArch
Constructor function for 'DArch' objects.
plot.DArch
Plot 'DArch' statistics or structure.
predict.DArch
Forward-propagate data.
preTrainDArch
Pre-trains a 'DArch' network
preTrainDArch-DArch-method
Pre-trains a 'DArch' network
print.DArch
Print 'DArch' details.
provideMNIST
Provides MNIST data set in the given folder.
RBM
Class for restricted Boltzmann machines
rbmUpdate
Function for updating the weights and biases of an 'RBM'
readMNIST
Function for generating .RData files of the MNIST Database
rectifiedLinearUnit
Rectified linear unit function with unit derivatives.
resetRBM
Resets the weights and biases of the 'RBM' object
rmseError
Root-mean-square error function
rpropagation
Resilient backpropagation training for deep architectures.
runDArch
Forward-propagates data through the network
runDArchDropout
Forward-propagate data through the network with dropout...
saveDArch
Saves a DArch network
setDarchParams
Set 'DArch' parameters
setDropoutMask-set
Set the dropout mask for the given layer.
setLogLevel
Set the log level.
show-DArch-method
Print 'DArch' details.
sigmoidUnit
Sigmoid unit function with unit derivatives.
sigmoidUnitRbm
Calculates the RBM neuron output with the sigmoid function
softmaxUnit
Softmax unit function with unit derivatives.
softplusUnit
Softplus unit function with unit derivatives.
tanhUnit
Continuous Tan-Sigmoid unit function.
tanhUnitRbm
Calculates the neuron output with the hyperbolic tangent...
trainRBM
Trains an 'RBM' with contrastive divergence
validateDataSet
Validate 'DataSet'
validateDataSet-DataSet-method
Validate 'DataSet'
weightDecayWeightUpdate
Updates the weight using weight decay.

Files in this package

darch
darch/inst
darch/inst/CITATION
darch/src
darch/src/minimize.cpp
darch/src/rpropagation.cpp
darch/src/darchUnitFunctions.cpp
darch/src/maxout.cpp
darch/src/normalizeWeights.cpp
darch/src/dither.cpp
darch/src/applyDropoutMask.cpp
darch/src/RcppExports.cpp
darch/NAMESPACE
darch/R
darch/R/bootstrap.R
darch/R/darchUnitFunctions.R
darch/R/net.Class.R
darch/R/plot.R
darch/R/darch.R
darch/R/rbm.Reset.R
darch/R/log.R
darch/R/predict.R
darch/R/darch.Getter.R
darch/R/momentum.R
darch/R/newDArch.R
darch/R/mnist.R
darch/R/net.Getter.R
darch/R/dropout.R
darch/R/benchmark.R
darch/R/darch.Learn.R
darch/R/autosave.R
darch/R/rbmUnitFunctions.R
darch/R/generateWeightsFunctions.R
darch/R/test.R
darch/R/rpropagation.R
darch/R/RcppExports.R
darch/R/print.R
darch/R/makeStartEndPoints.R
darch/R/config.R
darch/R/params.R
darch/R/backpropagation.R
darch/R/dataset.R
darch/R/darch.Add.R
darch/R/darch.Setter.R
darch/R/minimizeAutoencoder.R
darch/R/rbmUpdate.R
darch/R/runDArch.R
darch/R/generateRBMs.R
darch/R/minimizeClassifier.R
darch/R/util.R
darch/R/errorFunctions.R
darch/R/minimize.R
darch/R/darch.Class.R
darch/R/compat.R
darch/R/saveDArch.R
darch/R/loadDArch.R
darch/R/rbm.Learn.R
darch/R/weightUpdateFunctions.R
darch/R/rbm.Class.R
darch/R/caret.R
darch/MD5
darch/README
darch/DESCRIPTION
darch/man
darch/man/rectifiedLinearUnit.Rd
darch/man/exponentialLinearUnit.Rd
darch/man/resetRBM.Rd
darch/man/RBM.Rd
darch/man/getDropoutMask.Rd
darch/man/minimizeClassifier.Rd
darch/man/DataSet.Rd
darch/man/darchBench.Rd
darch/man/makeStartEndPoints.Rd
darch/man/createDataSet-ANY-ANY-missing-missing-method.Rd
darch/man/generateWeightsHeNormal.Rd
darch/man/show-DArch-method.Rd
darch/man/maxoutUnit.Rd
darch/man/crossEntropyError.Rd
darch/man/generateWeightsGlorotUniform.Rd
darch/man/rmseError.Rd
darch/man/darch.Rd
darch/man/darchModelInfo.Rd
darch/man/addLayer-DArch-method.Rd
darch/man/generateDropoutMask.Rd
darch/man/tanhUnit.Rd
darch/man/addLayer.Rd
darch/man/generateWeightsHeUniform.Rd
darch/man/validateDataSet.Rd
darch/man/saveDArch.Rd
darch/man/rpropagation.Rd
darch/man/Net.Rd
darch/man/maxoutWeightUpdate.Rd
darch/man/generateWeightsNormal.Rd
darch/man/createDataSet-ANY-missing-formula-missing-method.Rd
darch/man/runDArch.Rd
darch/man/preTrainDArch-DArch-method.Rd
darch/man/predict.DArch.Rd
darch/man/generateRBMs-DArch-method.Rd
darch/man/sigmoidUnitRbm.Rd
darch/man/linearUnit.Rd
darch/man/print.DArch.Rd
darch/man/softmaxUnit.Rd
darch/man/linearUnitRbm.Rd
darch/man/preTrainDArch.Rd
darch/man/fineTuneDArch.Rd
darch/man/createDataSet-ANY-ANY-missing-DataSet-method.Rd
darch/man/tanhUnitRbm.Rd
darch/man/minimizeAutoencoder.Rd
darch/man/contr.ltfr.Rd
darch/man/readMNIST.Rd
darch/man/setLogLevel.Rd
darch/man/trainRBM.Rd
darch/man/validateDataSet-DataSet-method.Rd
darch/man/provideMNIST.Rd
darch/man/loadDArch.Rd
darch/man/softplusUnit.Rd
darch/man/rbmUpdate.Rd
darch/man/getMomentum.Rd
darch/man/addLayerField.Rd
darch/man/mseError.Rd
darch/man/fineTuneDArch-DArch-method.Rd
darch/man/newDArch.Rd
darch/man/addLayerField-DArch-method.Rd
darch/man/DArch-class.Rd
darch/man/plot.DArch.Rd
darch/man/weightDecayWeightUpdate.Rd
darch/man/sigmoidUnit.Rd
darch/man/minimize.Rd
darch/man/generateWeightsGlorotNormal.Rd
darch/man/createDataSet.Rd
darch/man/setDarchParams.Rd
darch/man/generateWeightsUniform.Rd
darch/man/backpropagation.Rd
darch/man/setDropoutMask-set.Rd
darch/man/darchTest.Rd
darch/man/runDArchDropout.Rd
darch/LICENSE