Description Usage Arguments Details Value References See Also Examples
View source: R/darchUnitFunctions.R
The function calculates the activation of the units and returns a list, in which the first entry is the result through the maxout transfer function and the second entry is the derivative of the transfer function.
1 2 3 | maxoutUnit(input, ..., poolSize = getParameter(".darch.maxout.poolSize", 2,
...), unitFunc = getParameter(".darch.maxout.unitFunction", linearUnit,
...), dropoutMask = vector())
|
input |
Input for the activation function. |
... |
Additional parameters, passed on to inner unit function. |
poolSize |
The size of each maxout pool. |
unitFunc |
Inner unit function for maxout. |
dropoutMask |
Vector containing the dropout mask. |
Maxout sets the activations of all neurons but the one with the highest
activation within a pool to 0
. If this is used without
maxoutWeightUpdate, it becomes the local-winner-takes-all algorithm,
as the only difference between the two is that outgoing weights are shared
for maxout.
A list with the maxout activation in the first entry and the derivative of the transfer function in the second entry.
Srivastava, Rupesh Kumar, Jonathan Masci, Sohrob Kazerounian, Faustino Gomez, and Juergen Schmidhuber (2013). "Compete to Compute". In: Advances in Neural Information Processing Systems 26. Ed. by C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger. Curran Associates, Inc., pp. 2310-2318. URL: http://papers.nips.cc/paper/5059-compete-to-compute.pdf
Goodfellow, Ian J., David Warde-Farley, Mehdi Mirza, Aaron C. Courville, and Yoshua Bengio (2013). "Maxout Networks". In: Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pp. 1319-1327. URL: http://jmlr.org/proceedings/papers/v28/goodfellow13.html
Other darch unit functions: exponentialLinearUnit
,
linearUnit
,
rectifiedLinearUnit
,
sigmoidUnit
, softmaxUnit
,
softplusUnit
, tanhUnit
1 2 3 4 5 6 7 8 9 10 11 12 13 | ## Not run:
data(iris)
# LWTA:
model <- darch(Species ~ ., iris, c(0, 50, 0),
darch.unitFunction = c("maxoutUnit", "softmaxUnit"),
darch.maxout.poolSize = 5, darch.maxout.unitFunction = "sigmoidUnit")
# Maxout:
model <- darch(Species ~ ., iris, c(0, 50, 0),
darch.unitFunction = c("maxoutUnit", "softmaxUnit"),
darch.maxout.poolSize = 5, darch.maxout.unitFunction = "sigmoidUnit",
darch.weightUpdateFunction = c("weightDecayWeightUpdate", "maxoutWeightUpdate"))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.