Khat: Estimation of the K function In dbmss: Distance-Based Measures of Spatial Structures

Description

Estimates the K function

Usage

 `1` ```Khat(X, r = NULL, ReferenceType = "", NeighborType = ReferenceType, CheckArguments = TRUE) ```

Arguments

 `X` A weighted, marked, planar point pattern (`wmppp.object`). `r` A vector of distances. If `NULL`, a sensible default value is chosen (512 intervals, from 0 to half the diameter of the window) following `spatstat`. `ReferenceType` One of the point types. Default is all point types. `NeighborType` One of the point types. By default, the same as reference type. `CheckArguments` Logical; if `TRUE`, the function arguments are verified. Should be set to `FALSE` to save time in simulations for example, when the arguments have been checked elsewhere.

Details

K is a cumulative, topographic measure of a point pattern structure.

Value

An object of class `fv`, see `fv.object`, which can be plotted directly using `plot.fv`.

Note

The computation of `Khat` relies on spatstat functions `Kest` and `Kcross`.

Author(s)

Eric Marcon <[email protected]>

References

Ripley, B. D. (1976). The Foundations of Stochastic Geometry. Annals of Probability 4(6): 995-998.

Ripley, B. D. (1977). Modelling Spatial Patterns. Journal of the Royal Statistical Society B 39(2): 172-212.

`Lhat`, `KEnvelope`, `Ktest`
 ```1 2 3 4 5 6 7 8 9``` ```data(paracou16) plot(paracou16) # Calculate K r <- 0:30 (Paracou <- Khat(paracou16, r)) # Plot (after normalization by pi.r^2) plot(Paracou, ./(pi*r^2) ~ r) ```