Nothing
#' Density-Convoluted Support Vector Machines
#'
#' This package implements the density-convoluted SVM for high-dimensional classification.
#'
#' @name dcsvm-package
#' @aliases dcsvm-package
#' @author Boxiang Wang, Le Zhou, Yuwen Gu, and Hui Zou\cr Maintainer:
#' Boxiang Wang <boxiang-wang@uiowa.edu>
#' @references
#' Wang, B., Zhou, L., Gu, Y., and Zou, H. (2023)
#' \emph{Density-Convoluted Support Vector Machines for High-Dimensional Classification, IEEE Transactions on Information Theory, Vol. 69(4), 2523-2536},
#' @description
#' This package provides tools to perform density-convoluted support vector machine (DCSVM) modeling for high-dimensional data classification.
#'
#' @details
#' \tabular{ll}{
#' Package: \tab dcsvm\cr
#' Type: \tab Package\cr
#' Version: \tab 0.0.1\cr
#' Date: \tab 2025-01-08\cr
#' License: \tab GPL-2\cr
#' }
#' The package \code{dcsvm} contains five main functions:\cr
#' \itemize{
#' \item \code{dcsvm}
#' \item \code{cv.dcsvm}
#' \item \code{coef.dcsvm}
#' \item \code{plot.dcsvm}
#' \item \code{plot.cv.dcsvm}
#' }
#'
#' @keywords SVM
#' @keywords high-dimensional
#' @keywords classification
#'
#' @import methods
#' @import Matrix
#' @importFrom stats approx coef predict rnorm pnorm sd
#' @importFrom graphics abline axis matplot points segments text
#' @importFrom grDevices gray.colors
"_PACKAGE"
#' Internal DCSVM Functions
#'
#' Internal helper functions for the DCSVM package.
#'
#' @name dcsvm-internal
#' @title Internal DCSVM Functions
#' @description These internal functions are not intended for direct use by users.
#' For example, \code{err} obtains error messages from Fortran code,
#' \code{error.bars} helps to plot cross-validation error curves,
#' and \code{getmin} identifies the best \code{lambda} through cross-validation.
#' Other functions assist with kernel loss computations, coefficient management, and interpolation.
#'
#' @aliases cv.gaussian cv.uniform cv.epanechnikov cvcompute dcsvm.gauss dcsvm.unif
#' dcsvm.epane err error.bars getmin getoutput lambda.interp lamfix loss.epanechnikov
#' loss.gaussian loss.uniform nonzero zeromat
#'
#' @usage
#' cv.gaussian(outlist, lambda, x, y, foldid, pred.loss, hval)
#' cv.uniform(outlist, lambda, x, y, foldid, pred.loss, hval)
#' cv.epanechnikov(outlist, lambda, x, y, foldid, pred.loss, hval)
#' cvcompute(mat, foldid, nlams)
#' dcsvm.gauss(x, y, alpha, lam2, hval, nlam, flmin, ulam, isd, eps, dfmax, pmax, jd,
#' pfncol, pf, pf2, maxit, istrong, nobs, nvars, vnames)
#' dcsvm.unif(x, y, alpha, lam2, hval, nlam, flmin, ulam, isd, eps, dfmax, pmax, jd,
#' pfncol, pf, pf2, maxit, istrong, nobs, nvars, vnames)
#' dcsvm.epane(x, y, alpha, lam2, hval, nlam, flmin, ulam, isd, eps, dfmax, pmax, jd,
#' pfncol, pf, pf2, maxit, istrong, nobs, nvars, vnames)
#' err(n, maxit, pmax)
#' error.bars(x, upper, lower, width = 0.02, ...)
#' getmin(lambda, cvm, cvsd)
#' getoutput(fit, maxit, pmax, nvars, vnames)
#' lambda.interp(lambda, s)
#' lamfix(lam)
#' loss.epanechnikov(u, hval)
#' loss.gaussian(u, hval)
#' loss.uniform(u, hval)
#' nonzero(beta, bystep = FALSE)
#' zeromat(nvars, nalam, vnames, stepnames)
#'
#' @details Most of these functions are adapted or directly copied from the \code{gcdnet} and \code{glmnet} packages.
#'
#' @keywords internal
NULL
#'
#' Simplified Gene Expression Data from Alon et al. (1999)
#'
#' Gene expression data (2000 genes for 62 samples) from a DNA microarray experiment of colon tissue samples (Alon et al., 1999).
#'
#' @name colon
#' @aliases colon
#' @title Simplified Gene Expression Data from Alon et al. (1999)
#'
#' @usage
#' data(colon)
#'
#' @description
#' This dataset contains 62 colon tissue samples with 2000 gene expression levels. Among these samples, 40 are tumor tissues (coded as 1) and 22 are normal tissues (coded as -1).
#'
#' @return
#' A list with the following elements:
#' \item{x}{A matrix of 62 rows and 2000 columns representing the gene expression levels of 62 colon tissue samples. Each row corresponds to a sample, and each column corresponds to a gene.}
#' \item{y}{A numeric vector of length 62 representing the tissue type (1 for tumor; -1 for normal).}
#'
#' @source
#' The data were introduced in Alon et al. (1999).
#'
#' @references
#' Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., and Levine, A.J. (1999).
#' ``Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays,''
#' \emph{Proceedings of the National Academy of Sciences}, \bold{96}(12), 6745--6750.
#'
#' @examples
#' # Load the dcsvm library
#' library(dcsvm)
#'
#' # Load the dataset
#' data(colon)
#'
#' # Check the dimensions of the data
#' dim(colon$x)
#'
#' # Count the number of samples in each class
#' sum(colon$y == -1)
#' sum(colon$y == 1)
#'
#' @keywords data set
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.